Data Science: Statistics Meets Optimization

ComputerScience StatisticalTheory Optimization TuningParameters Mathematics MachineLearning DeepLearning Remotistics Augorithms All HighDimensions DataScience DiffusionModels Astrophysics

Johannes Lederer

Universität Hamburg der forschung | der lehre | der Bildung

Funded by

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Lambro, one year ago

Extreme-Value Theory Is Not Extrapolation (Extremes in high dimensions: methods and scalable algorithms, 2023)

Extreme-Value Theory Is Not Extrapolation (Extremes in high dimensions: methods and scalable algorithms, 2023)

Extreme-Value Theory Is Not Extrapolation (Extremes in high dimensions: methods and scalable algorithms, 2023)

 $\lim_{t \to \infty} \mathbb{P}\left\{ X/t \in \mathcal{A} \mid \|X\| > t \right\} \sim \mathfrak{m}[\mathcal{A}]$

Networks Are High Dimensional

(Extremes in high dimensions: methods and scalable algorithms, 2023)

Networks Are High Dimensional

(Extremes in high dimensions: methods and scalable algorithms, 2023)

Key challenge: $p \approx d^2$ large, n usually small

$$\frac{1}{c_{\Gamma}} \frac{1}{x_m} \left(\prod_{j=1}^d \frac{1}{x_j} \right) \mathfrak{n}_{d-1} \left[\log[\boldsymbol{x}_{-m}/x_m]; -\boldsymbol{\Gamma}_{-m,m}/2, \boldsymbol{\Sigma} \right]$$

•
$$x \in \{a \in (0,\infty)^d : \|a\| > 1\}$$

- \mathfrak{n}_{d-1} : Gauss density
- $\mathbf{\Gamma} \in \mathbb{R}^{d \times d}$: variogram matrix
- $\Sigma \equiv \Sigma[\Gamma, m] \in \mathbb{R}^{(d-1) \times (d-1)}$: covariance matrix
- c_{Γ} : normalizing constant

$$\frac{1}{c_{\Gamma}} \frac{1}{x_m} \left(\prod_{j=1}^d \frac{1}{x_j} \right) \mathfrak{n}_{d-1} \left[\log[\boldsymbol{x}_{-m}/x_m]; -\boldsymbol{\Gamma}_{-m,m}/2, \boldsymbol{\Sigma} \right]$$

C Almost like Gaussian graphical models

$$\frac{1}{c_{\Gamma}} \frac{1}{x_m} \left(\prod_{j=1}^d \frac{1}{x_j} \right) \mathfrak{n}_{d-1} \left[\log[\boldsymbol{x}_{-m}/x_m]; \underbrace{-\boldsymbol{\Gamma}_{-m,m}/2}_{\sim \boldsymbol{\mu}}, \underbrace{\boldsymbol{\Sigma}}_{\sim \boldsymbol{\Lambda}^{-1}} \right]$$

- C Almost like Gaussian graphical models
- \bigcirc Not really like Gaussian graphical models \longrightarrow we establish generalized "densities" \bigcirc

$$\frac{1}{c_{\Gamma}} \frac{1}{x_m} \left(\prod_{j=1}^d \frac{1}{x_j} \right) \mathfrak{n}_{d-1} \left[\log[\boldsymbol{x}_{-m}/x_m]; \underbrace{-\boldsymbol{\Gamma}_{-m,m}/2}_{\sim \boldsymbol{\mu}}, \underbrace{\boldsymbol{\Sigma}}_{\sim \boldsymbol{\Lambda}^{-1}} \right]$$

- C Almost like Gaussian graphical models
- \bigcirc Not really like Gaussian graphical models \longrightarrow we establish generalized "densities" \bigcirc

Score Matching Circumvents Normalizations (Extremes in high dimensions: methods and scalable algorithms, 2023)

Our densities are of the form

$$\mathfrak{h}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}] = e^{\mathfrak{g}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}]} / c_{\boldsymbol{\mu}, \boldsymbol{\Lambda}}$$

with explicit $\mathfrak{g}[\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Lambda}]$ and integral normalization $c_{\boldsymbol{\mu},\boldsymbol{\Lambda}}$.

Score Matching Circumvents Normalizations (Extremes in high dimensions: methods and scalable algorithms, 2023)

Our densities are of the form

$$\mathfrak{h}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}] = e^{\mathfrak{g}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}]} / c_{\boldsymbol{\mu}, \boldsymbol{\Lambda}}$$

with explicit $\mathfrak{g}[\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Lambda}]$ and integral normalization $c_{\boldsymbol{\mu},\boldsymbol{\Lambda}}$.

Maximum likelihood

$$\begin{aligned} \operatorname*{argmax}_{\boldsymbol{\mu},\boldsymbol{\Lambda}} \mathbb{E} \Big[\log \mathfrak{h}[\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Lambda}] \Big] \\ = \ \operatorname*{argmax}_{\boldsymbol{\mu},\boldsymbol{\Lambda}} \mathbb{E} \Big[\mathfrak{g}[\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Lambda}] - \log c_{\boldsymbol{\mu},\boldsymbol{\Lambda}} \Big] \end{aligned}$$

is computationally infeasible.

Score Matching Circumvents Normalizations (Extremes in high dimensions: methods and scalable algorithms, 2023)

Our densities are of the form

$$\mathfrak{h}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}] = e^{\mathfrak{g}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}]} / c_{\boldsymbol{\mu}, \boldsymbol{\Lambda}}$$

with explicit $\mathfrak{g}[\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Lambda}]$ and integral normalization $c_{\boldsymbol{\mu},\boldsymbol{\Lambda}}$.

Score matching

$$\underset{\boldsymbol{\mu}, \boldsymbol{\Lambda}}{\operatorname{argmin}} \mathbb{E} \Big[\Big\| \underbrace{\nabla_{\boldsymbol{x}} \log \mathfrak{h}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}]}_{\text{"score"}} - \nabla_{\boldsymbol{x}} \log \mathfrak{h}^{*}[\boldsymbol{x}] \Big\|_{2}^{2} \Big] \\ = \operatorname{argmin}_{\boldsymbol{\mu}, \boldsymbol{\Lambda}} \mathbb{E} \Big[\Big\| \nabla_{\boldsymbol{x}} \mathfrak{g}[\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}] - \nabla_{\boldsymbol{x}} \log \mathfrak{h}^{*}[\boldsymbol{x}] \Big\|_{2}^{2} \Big]$$

looks much more promising.

Score Matching Provides Feasible Objectives (Extremes in high dimensions: methods and scalable algorithms, 2023)

Proposition (Score Matching): Under some assumptions $\operatorname{argmin}_{\mu,\Lambda} \mathbb{E}\Big[\|\nabla_{\boldsymbol{x}} \,\mathfrak{g}[\boldsymbol{x};\boldsymbol{\mu},\Lambda] - \nabla_{\boldsymbol{x}} \log \mathfrak{h}^*[\boldsymbol{x}] \|_2^2 \Big]$ $= \operatorname{argmin}_{\mu,\Lambda} \mathbb{E}\Big[\sum_{j=1}^d \partial_{x_j} \mathfrak{g}[\boldsymbol{x};\boldsymbol{\mu},\Lambda] + 2 \sum_{j=1}^d \left(\partial_{x_j}^2 \mathfrak{g}[\boldsymbol{x};\boldsymbol{\mu},\Lambda] \right)^2 \Big].$

The Final Estimator Is Sparse and Scalable (Extremes in high dimensions: methods and scalable algorithms, 2023)

$$\begin{split} \widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Lambda}} &\in \operatorname{argmin}_{\boldsymbol{\mu}, \boldsymbol{\Lambda}} \\ &\left\{ \sum_{i=1}^{n} \left\| \left(\boldsymbol{\mu} - \mathbf{1} - (\boldsymbol{\Lambda} + \boldsymbol{\Lambda}^{\top} - \operatorname{diag}[\boldsymbol{\Lambda} \mathbf{1} + \boldsymbol{\Lambda}^{\top} \mathbf{1}]) \log[\boldsymbol{x}_{i}] \right) \otimes \mathfrak{f}_{1}[\boldsymbol{x}_{i}] \right\|_{2}^{2} \\ &+ \sum_{i=1}^{n} \left(\boldsymbol{\mu} - \mathbf{1} - (\boldsymbol{\Lambda} + \boldsymbol{\Lambda}^{\top} - \operatorname{diag}[\boldsymbol{\Lambda} \mathbf{1} + \boldsymbol{\Lambda}^{\top} \mathbf{1}]) \log[\boldsymbol{x}_{i}] \right) \otimes \mathfrak{f}_{2}[\boldsymbol{x}_{i}] \\ &- \sum_{i=1}^{n} \operatorname{trace} \left[(\boldsymbol{\Lambda} + \boldsymbol{\Lambda}^{\top} - \operatorname{diag}[\boldsymbol{\Lambda} \mathbf{1} + \boldsymbol{\Lambda}^{\top} \mathbf{1}]) \boldsymbol{F}[\boldsymbol{x}_{i}] \right] + r \operatorname{prior}[\boldsymbol{\mu}, \boldsymbol{\Lambda}] \right\} \end{split}$$

Can be computed within seconds $(n \approx 1000, d \approx 20, p \approx 200)$ to minutes $(n \approx 100\,000, d \approx 100, p \approx 5000)$ on a standard laptop.

The Estimator Satisfies Finite-Sample Guarantees Even in High Dimensions

(Extremes in high dimensions: methods and scalable algorithms, 2023)

Theorem (Extremes): Under reasonable assumptions, such as r large enough, it holds that $\|\widehat{\mu} - \mu^*\|_2^2 + \|\widehat{\Lambda} - \Lambda^*\|_{\mathrm{F}}^2 \lesssim \frac{(|\mathcal{S}_{\mu^*}| + |\mathcal{S}_{\Lambda^*}|)r^2}{n}$ with high probability

with high probability.

 \implies "sparsistency"

The Statistical Proofs Are "Geometric"

(Extremes in high dimensions: methods and scalable algorithms, 2023)

Diffusion Models Destroy and Rebuild (Regularization can make diffusion models more efficient, 2025)

The Forward Process Injects Noise (Regularization can make diffusion models more efficient, 2025)

$$oldsymbol{x}_j \; \coloneqq \; \sqrt{1-eta_j} \, oldsymbol{x}_{j-1} + \sqrt{eta_j} \, oldsymbol{u}_{j-1}$$

with white noise $\boldsymbol{u}_j \sim \mathcal{N}[\boldsymbol{0}_d, I_d]$ and noise schedule $\beta_j \in (0, 1)$

The distribution of \boldsymbol{x}_j given an "original" sample \boldsymbol{x}_0 is

$$\mathbb{Q}_{j}[oldsymbol{x}_{j} \mid oldsymbol{x}_{0}] \;=\; \mathcal{N}iggl[oldsymbol{x}_{j}; iggl(\prod_{l=1}^{j}\sqrt{1-eta_{l}}iggr)oldsymbol{x}_{0}, iggl(1-\prod_{l=1}^{j}(1-eta_{l})iggr)I_{d}iggr]$$

The Backward Process Recovers an Original (Regularization can make diffusion models more efficient, 2025)

$$oldsymbol{x}_{j-1} \;=\; rac{1}{\sqrt{1-eta_j}}oldsymbol{x}_j+eta_j \underbrace{
abla_{oldsymbol{x}_j}\log oldsymbol{\mathfrak{q}}_j[oldsymbol{x}_j]}_{ ext{"score"}}oldsymbol{)}+\sqrt{rac{eta_j}{1-eta_j}}\,oldsymbol{z}_j$$

with the marginal density $q_j[\boldsymbol{x}_j] = \int q_j[\boldsymbol{x}_j \mid \boldsymbol{x}] p_0[\boldsymbol{x}] d\boldsymbol{x}$ and white noise $\boldsymbol{z}_j \sim \mathcal{N}[\boldsymbol{0}_d, I_d]$

Standard Estimation Suffers From the Curse of Dimensionality

(Regularization can make diffusion models more efficient, 2025)

$$\widehat{\boldsymbol{\Theta}} \in \operatorname{argmin}_{\boldsymbol{\Theta} \in \mathcal{A}} \left\{ \mathbb{E}_{\substack{j \sim \mathcal{U}_{[0,t]} \\ X_j \sim \mathbb{Q}_j}} \left[\left\| \boldsymbol{s}_{\boldsymbol{\Theta}}[X_j, j] - \nabla_{X_j} \log \mathfrak{q}_j[X_j] \right\|_2^2 \right] \right\}$$

Theorem ("Classical"): It holds with high probability that $\mathfrak{d}_{\mathrm{KL}}[\mathfrak{p}_0,\widehat{\mathfrak{p}}_0] \lesssim \frac{d^2}{t} \,.$

Sparsity Breaks the Curse

(Regularization can make diffusion models more efficient, 2025)

$$(\widehat{\boldsymbol{\Theta}}, \widehat{\kappa}) \in \underset{\substack{\boldsymbol{\Theta} \in \mathcal{A}_1\\\kappa \in (0,\infty)}}{\operatorname{argmin}} \left\{ \underset{\substack{X_j \sim \mathcal{U}_{[0,t]}\\X_j \sim \mathbb{Q}_j}}{\mathbb{E}_j \sim \mathcal{U}_{[0,t]}} \left[\left\| \kappa \boldsymbol{s}_{\boldsymbol{\Theta}}[X_j, j] - \nabla_{X_j} \log \mathfrak{q}_j[X_j] \right\|_2^2 \right] + r \kappa \right\}$$

Theorem (Regularized): It holds with high probability that $\mathfrak{d}_{\mathrm{KL}}[\mathfrak{p}_0, \widehat{\mathfrak{p}}_0] \lesssim \frac{s^2}{t}.$

Regularization Makes a Visible Difference (Regularization can make diffusion models more efficient, 2025)

t = 500

Regularization Makes a Visible Difference (Regularization can make diffusion models more efficient, 2025)

$$t = 50$$

Regularization Makes a Visible Difference

(Regularization can make diffusion models more efficient, 2025)

t = 500

Regularization Makes a Visible Difference

(Regularization can make diffusion models more efficient, 2025)

Vanilla Diffusion

t = 50

Example: $\widehat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\operatorname{argmin}} \{ \| \boldsymbol{y} - X \boldsymbol{\theta} \|_2^2 + r \| \boldsymbol{\theta} \|_1 \}$

Example:
$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \{ \| \boldsymbol{y} - X \boldsymbol{\theta} \|_2^2 + r \| \boldsymbol{\theta} \|_1 \}; \ \boldsymbol{y} = X \boldsymbol{\theta}^* + \boldsymbol{u}$$

Goal: Select t and r simultaneously

(Balancing statistical and computational precision: a general theory and applications to sparse regression, 2023)

$$\widehat{\mathcal{F}}_{\mathcal{R}} = \{\widehat{\boldsymbol{\theta}}^r : r \in \mathcal{R}\}$$
 theoretical estimators
 $\mathfrak{d}[\widehat{\boldsymbol{\theta}}^r, \boldsymbol{\theta}^*] \leq \mathfrak{f}[r] \quad \forall r \geq r^*$

 $\widetilde{\mathcal{F}}_{\mathcal{R}} = \{ \widetilde{\boldsymbol{\theta}}_t^r : r \in \mathcal{R}, t \in \{1, 2, \dots\} \} \text{ practical estimators} \\ \mathfrak{d}[\widetilde{\boldsymbol{\theta}}_t^r, \widehat{\boldsymbol{\theta}}^r] \leq \mathfrak{g}[r, t] \quad \forall r \in \mathcal{R}$

A Surprisingly Concise Algorithm

(Balancing statistical and computational precision: a general theory and applications to sparse regression, 2023)

We Have Optimal Theoretical Guarantees

(Balancing statistical and computational precision: a general theory and applications to sparse regression, 2023)

Theorem (Optimality): It holds that

$$\mathfrak{D}[\widetilde{oldsymbol{ heta}}, oldsymbol{ heta}^*] \leq 6 \mathfrak{f}[r^*].$$

The Theorem Has a Short, Elementary Proof

Consider \hat{r} with $\tilde{\boldsymbol{\theta}}^{\hat{r}} = \tilde{\boldsymbol{\theta}}$ (we omit \tilde{t} for ease of notation)

If $\hat{r} > r^*$, then $\exists r', r'' \ge r^*$ such that

$$\mathfrak{d}[\widetilde{\boldsymbol{ heta}}^{r'},\widetilde{\boldsymbol{ heta}}^{r''}] > \mathfrak{f}[r'] + \mathfrak{g}[r'] + \mathfrak{f}[r''] + \mathfrak{g}[r''].$$

The Theorem Has a Short, Elementary Proof

Consider \hat{r} with $\tilde{\boldsymbol{\theta}}^{\hat{r}} = \tilde{\boldsymbol{\theta}}$ (we omit \tilde{t} for ease of notation)

If $\hat{r} > r^*$, then $\exists r', r'' \ge r^*$ such that

$$\mathfrak{d}[\widetilde{\boldsymbol{ heta}}^{r'},\widetilde{\boldsymbol{ heta}}^{r''}] > \mathfrak{f}[r'] + \mathfrak{g}[r'] + \mathfrak{f}[r''] + \mathfrak{g}[r''].$$

But

The Theorem Has a Short, Elementary Proof

Recall that $\hat{r} \leq r^*$. Hence,

Works Like a Charm for the Lasso

(Balancing statistical and computational precision: a general theory and applications to sparse regression, 2023)

Workshop August 2025: datascienceminds.com

johanneslederer.com C LedererLab in johanneslederer O thedata.scienceguy

Workshop August 2025: datascienceminds.com

johanneslederer.com C LedererLab in johanneslederer O thedata.scienceguy

Workshop August 2025: datascienceminds.com

johanneslederer.com C LedererLab in johanneslederer O thedata.scienceguy

Extreme-Value Theory Is Not Extrapolation (Extremes in high dimensions: methods and scalable algorithms, 2023)

 $\lim_{t \to \infty} \mathbb{P}\left\{ X/t \in \mathcal{A} \mid \|X\| > t \right\} \sim \mathfrak{m}[\mathcal{A}]$

New Densities Disentangle the Parameters (Extremes in high dimensions: methods and scalable algorithms, 2023)

Theorem: Every Hüsler-Reiss density is of the form

$$\frac{1}{c_{\boldsymbol{\mu},\boldsymbol{\Lambda}}} \left(\prod_{j=1}^{d} \frac{1}{x_j} \right) \exp \left[\boldsymbol{\mu}^{\top} \log[\boldsymbol{x}] - \frac{1}{2} \log[\boldsymbol{x}] (\boldsymbol{\Lambda} + \boldsymbol{\Lambda}^{\top} - \operatorname{diag}(\boldsymbol{\Lambda} \mathbf{1} + \boldsymbol{\Lambda}^{\top} \mathbf{1})) \log[\boldsymbol{x}] \right].$$

- $\boldsymbol{\mu} \in \mathbb{R}^d$: shifts
- $\mathbf{\Lambda} \in \mathbb{R}^{d \times d}$ (upper triangular): dependences
- $c_{\mu,\Lambda}$: normalization

We Develop a Score-Matching Approach That Satisfies the Boundary Conditions (Extremes in high dimensions: methods and scalable algorithms, 2023)

The Estimator Behaves as Intended and can Be Computed Super Fast

(Extremes in high dimensions: methods and scalable algorithms, 2023)

 $\mathbf{n} = 500, \ \mathbf{d} = 20, \ \mathbf{p} = 190$ $r \qquad 1000\sqrt{\frac{\log[d]}{n}} \qquad 100\sqrt{\frac{\log[d]}{n}} \qquad 10\sqrt{\frac{\log[d]}{n}} \qquad 1\sqrt{\frac{\log[d]}{n}} \qquad 0.1\sqrt{\frac{\log[d]}{n}} \qquad 0.1\sqrt{\frac{\log[d]}{n}} \qquad 0$ $\|\widehat{\mathbf{A}}\|_0/(d(d-1)/2) \qquad 33.9\% \pm 2.7\% \qquad 63.1\% \pm 3.7\% \qquad 96.0\% \pm 1.3\% \qquad 99.7\% \pm 0.5\% \qquad 100.0\% \pm 0.1\% \qquad 100.0\% \pm 0.1\% \qquad 100.0\% \pm 0.1\%$ $t_{\text{pre}} + t_{\text{opt}} \ (\text{s}) \qquad \qquad < 0.01 \ s \pm 0.01 \ s \qquad + \qquad 0.83 \ s \pm 0.11 \ s$

Plenary talk at ICORS, May 21, 2025

Image credits: River Lambro May 2024: LaPress/REX/Shutterstock realDonaldTrump on Truth Social