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Extreme-Value Theory Is Not Extrapolation

(Extremes in high dimensions: methods and scalable algorithms, 2023)
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Extreme-Value Theory Is Not Extrapolation

(Extremes in high dimensions: methods and scalable algorithms, 2023)

lim P{X/t € A||X]| >t} ~ m[A]



Networks Are High Dimensional

(Extremes in high dimensions: methods and scalable algorithms, 2023)
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Networks Are High Dimensional

(Extremes in high dimensions: methods and scalable algorithms, 2023)
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Key challenge: p ~ d? large, n usually small



Starting Point: Hiisler-Reiss Densities

(Extremes in high dimensions: methods and scalable algorithms, 2023)
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—— Hﬁ ng1 [log[@ /)i =T /2, 3 ]

x €{ac(0,00): |a| > 1}

e 1n, 1: Gauss density

I' € R?*4: variogram matrix
e X =3[I',m] € RE-DX(=D: covariance matrix

e cr: normalizing constant
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Starting Point: Hiisler-Reiss Densities

(Extremes in high dimensions: methods and scalable algorithms, 2023)
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— we establish generalized “densities” ©



Starting Point: Hiisler-Reiss Densities

(Extremes in high dimensions: methods and scalable algorithms, 2023)
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© Almost like Gaussian graphical models

@ Not really like Gaussian graphical models
— we establish generalized “densities” ©

@ Statistically and computationally challenging
— we establish a scalable estimator ©



Score Matching Circumvents Normalizations
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Our densities are of the form

blac; o, A] = et N fe,

with explicit g[z; pu, A] and integral normalization ¢, A.

“density” “likelihood”
x — bz p, A (1, A) = bl p, A




Score Matching Circumvents Normalizations

(Extremes in high dimensions: methods and scalable algorithms, 2023)
Our densities are of the form

blz; p, A] = 8= e, o
with explicit g[z; pu, A] and integral normalization ¢, A.

Maximum likelihood

argmax £ [log blx; w, A]}
n,A

= argmaXE[g[m; w, A] —log CMA]
w,A

is computationally infeasible.



Score Matching Circumvents Normalizations
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Our densities are of the form

blz; p, A] = 8= e, o
with explicit g[z; pu, A] and integral normalization ¢, A.

Score matching

argmin B |V log bfe: . A] V., log '] ]
HoA ) “sc?)?e” .

i | g 1 A — V. o]
A

looks much more promising.



Score Matching Provides Feasible Objectives

(Extremes in high dimensions: methods and scalable algorithms, 2023)

4 )
Proposition (Score Matching): Under some as-

sumptions

argminE [va glz; p, Al — Vi log h*[x] Hﬂ

28 gz, A +22 (92, wu,A])

= argminE
A




The Final Estimator Is Sparse and Scalable

(Extremes in high dimensions: methods and scalable algorithms, 2023)

(i,A) € argmin
wA

{Z H (b—1—(A+ AT —diag[A1+AT1]) log[x;]) @ f, [x] z

+Z —1— (A+A"T —diag[A1 + A" 1)) log[z;]) ® f,[i]

— Z trace [(A + A" —diag[A1+ A" 1])F[scl]} + r prior|[pu, A]}

=1

Can be computed within seconds (n ~ 1000, d =~ 20, p =~ 200)
to minutes (n &~ 100000, d ~ 100, p ~ 5000) on a standard
laptop.



The Estimator Satisfies Finite-Sample
Guarantees Even in High Dimensions

(Extremes in high dimensions: methods and scalable algorithms, 2023)

~

Theorem (Extremes): Under reasonable assump-
tions, such as r large enough, it holds that

o (18w + 18-

~Y

[ — wls + 1A — Al -

with high probability.

— “sparsistency”



The Statistical Proofs Are “Geometric”

(Extremes in high dimensions: methods and scalable algorithms, 2023)

global geometry

Curvature:
4«0[#71\] ~ #2 +A2 ”

/ \ submanifold geometry

Cone: Basic oracle inequality:
13

Ay c-Ace S Hs#\s “NAp,a ®F; ||§ < rprior[A, A]”
sC%s

/ local geometry

Estimation bound:
“li— w3+ 1A — A*E S r?/n”



Q” Donald J. Trump @




Diffusion Models Destroy and Rebuild

(Regularization can make diffusion models more efficient, 2025)

forward process

>

original sample @y ~ po[x] pure noise x; ~ N0, I]
m] 1 +u] 1
N ‘ ‘@. @)
felz;, J]

backward process



The Forward Process Injects Noise

(Regularization can make diffusion models more efficient, 2025)

zj = 1= Bimja+/Biuj

with white noise u; ~ N[04, I4] and noise schedule ; € (0,1)

The distribution of x; given an “original” sample x is

Qla; | @] = [w(H VI3 Jaa (1 [ )1 ]

=1 =1



The Backward Process Recovers an Original

(Regularization can make diffusion models more efficient, 2025)

Lj-1 = \/1;_75](131 + Bj vmj log Clj[wj]) + 1 fjﬁj z

“score”

with the marginal density q;[z;] = [ q;[x; | ]po[x] dx

and white noise z; ~ N[04, 1]



Standard Estimation Suffers From the
Curse of Dimensionality

(Regularization can make diffusion models more efficient, 2025)

~ . ) 2
O c alggrrﬁn{IEjNu[w] [HSQ[Xj,j] — Vx, log q; [Xj]Hz} }
c )

A~

J J

Theorem (“Classical”): It holds with high probabil-
ity that

2
oxL[po, Po] S 7




Sparsity Breaks the Curse

(Regularization can make diffusion models more efficient, 2025)

~ . ) 2
(©,r) € argmln{JEjNu[?@t] [HKSQ[Xj,]] — Vx;, log qj[Xj]H2:| —H“KJ}
X;~Q;

Theorem (Regularized): It holds with high proba-
bility that

2
R s
k[P0, Po] S 7




Regularization Makes a Visible Difference

(Regularization can make diffusion models more efficient, 2025)

Training Data Regularized Diffusion

Vanilla Diffusion
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Regularization Makes a Visible Difference

(Regularization can make diffusion models more efficient, 2025)

Training Data Regularized Diffusion

Vanilla Diffusion
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Regularization Makes a Visible Difference

(Regularization can make diffusion models more efficient, 2025)

Training Data Regularized Diffusion

Vanilla Diffusion
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Regularization Makes a Visible Difference

(Regularization can make diffusion models more efficient, 2025)

Vanilla Diffusion Training Data Regularlzed D1ffus1on
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Goal: Select ¢ and r simultaneously

(Balancing statistical and computational precision: a general theory and
applications to sparse regression, 2023)

Fr = {/H\T : 7 € R} theoretical estimators

00,07 < flr] Vr>r

Fr = {5: :r €R,t€{1,2,...}} practical estimators

~r -xr

00,,0 ] < g[r,t] VreR



A Surprisingly Concise Algorithm
(Balancing statistical and computational precision: a general theory and
applications to sparse regression, 2023)

Inputs : R, f, g
Outputs: 8 € Fr, 7€ R

1 Initialize 7 = maxR
Compute 0 — 5: with ¢ = min{t : g[r,#] < f[r]}
Initialize § = @,
while # # minR AND
Bre R\ (o0, : 0[0},8;] > flr]+alr.fl+{[7] +alf.

N

(]

(S

do
Update 6 = 5;
7 Go to 7 = max{R \ [\, 00)}
Compute 6 = 5; with ¢ = min{t : g[r,t] < f[r]}
9 end

=]

[ed)



We Have Optimal Theoretical Guarantees
(Balancing statistical and computational precision: a general theory and
applications to sparse regression, 2023)

Theorem (Optimality): It holds that

0[0,6%] < 6fr*].




The Theorem Has a Short, Elementary Proof

Consider # with 6 = 6 (we omit 7 for ease of notation)

If # > r*, then 37/, r” > r* such that

/ 1

~r! ~

(6,6 | > f[r']+ gl + "]+ a[r"].



The Theorem Has a Short, Elementary Proof

Consider # with 6 = 6 (we omit 7 for ease of notation)

If # > r*, then 37/, r” > r* such that

/ 7,,//

~r! ~

(6,6 | > f[r']+ gl + "]+ a[r"].

But

~p! o~y

[0 ,6 ]
< [0, 6] + [0 6]
<20 ,67+0[6 .0 |+06 ,6°]+06 .0 ]
tat ti tat pti
sta opti sta opti

< g+ e+ flT + el



The Theorem Has a Short, Elementary Proof

Recall that 7 < r*. Hence,

~F ~p*

< (0,0 | + 0[8 6]
algorithm stat&opti

< flrl ol ]+ 50T +olr] + §0r7] + ol

< 3§ +3g[r*] < 6.



Works Like a Charm for the Lasso

(Balancing statistical and computational precision: a general theory and
applications to sparse regression, 2023)
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Extreme-Value Theory Is Not Extrapolation

(Extremes in high dimensions: methods and scalable algorithms, 2023)

lim P{X/t € A||X]| >t} ~ m[A]



New Densities Disentangle the Parameters
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Theorem: Every Hiisler-Reiss density is of the
form

d
1 1
exp[ Tlog[ ]
Cu,A i Z;

_ %bg[;p] (A+AT —diag(A1+AT1)) 1og[w]] :

o € R%: shifts
e A € R¥™ (upper triangular): dependences

e ¢, A: normalization



We Develop a Score-Matching Approach
That Satisfies the Boundary Conditions

(Extremes in high dimensions: methods and scalable algorithms, 2023)

log[z] reX

\

argminMAE[H (Ve loghlam; p, A] — V log hlx )®a: ® log[x H }

w [m}



The Estimator Behaves as Intended
and can Be Computed Super Fast

(Extremes in high dimensions: methods and scalable algorithms, 2023)

n =500, d =20, p =190

r 1000/ 22l 100,/ el 104/l 14/ eld 0.1/l 001/l 0

\|./A\Hn/(d(dfl)/2) 33.9%+27% 631%+37% 96.0%+1.3% 99.7%+0.5% 100.0% +0.1% 100.0% £0.1% 100.0% £ 0.1%

tore + topt (8) <0.01s£0.01s + 083s+0.1ls

n=50000, d =80, p=23160

r 1000+ /122l 100,/ ogldl 10,/ o2l 14/ lesldl 0.1, /lldl 0.01 /ol o
|ALo/(d(d—1)/2)  799%+0.7% 98.0% +03% 99.8%+0.1% 100.0% +0.0% 100.0% +0.0% 100.0% +0.0% 100.0% +0.0%

tpre + topt 35.65s £2.72s + 199.14s £ 17.59s




Plenary talk at ICORS, May 21, 2025
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