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Extreme-Value Theory Is Not Extrapolation
(Extremes in high dimensions: methods and scalable algorithms, 2023)
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Networks Are High Dimensional
(Extremes in high dimensions: methods and scalable algorithms, 2023)
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Starting Point: Hüsler-Reiss Densities
(Extremes in high dimensions: methods and scalable algorithms, 2023)

1

cΓ

1

xm

(
d∏

j=1

1

xj

)
nd−1

[
log[x−m/xm];−Γ−m,m/2︸ ︷︷ ︸

⇝µ

, Σ︸︷︷︸
⇝Λ−1

]
• x ∈ {a ∈ (0,∞)d : ||a|| > 1}

• nd−1: Gauss density

• Γ ∈ Rd×d: variogram matrix

• Σ ≡ Σ[Γ,m] ∈ R(d−1)×(d−1): covariance matrix

• cΓ: normalizing constant
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Almost like Gaussian graphical models

Not really like Gaussian graphical models
−→ we establish generalized “densities”

Statistically and computationally challenging
−→ we establish a scalable estimator



Score Matching Circumvents Normalizations
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Our densities are of the form

h[x;µ,Λ] = eg[x;µ,Λ]/cµ,Λ

with explicit g[x;µ,Λ] and integral normalization cµ,Λ.

“density”

x 7→ h[x;µ,Λ]

“likelihood”

(µ,Λ) 7→ h[x;µ,Λ]



Score Matching Circumvents Normalizations
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Our densities are of the form

h[x;µ,Λ] = eg[x;µ,Λ]/cµ,Λ

with explicit g[x;µ,Λ] and integral normalization cµ,Λ.

Maximum likelihood

argmax
µ,Λ

E
[
log h[x;µ,Λ]

]
= argmax

µ,Λ
E
[
g[x;µ,Λ]− log cµ,Λ

]
is computationally infeasible.



Score Matching Circumvents Normalizations
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Our densities are of the form

h[x;µ,Λ] = eg[x;µ,Λ]/cµ,Λ

with explicit g[x;µ,Λ] and integral normalization cµ,Λ.

Score matching

argmin
µ,Λ

E
[∣∣∣∣∇x log h[x;µ,Λ]︸ ︷︷ ︸

“score”

−∇x log h
∗[x]

∣∣∣∣2
2

]
= argmin

µ,Λ
E
[∣∣∣∣∇x g[x;µ,Λ]−∇x log h

∗[x]
∣∣∣∣2
2

]
looks much more promising.



Score Matching Provides Feasible Objectives
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Proposition (Score Matching): Under some as-
sumptions

argmin
µ,Λ

E
[∣∣∣∣∇x g[x;µ,Λ]−∇x log h

∗[x]
∣∣∣∣2
2

]
= argmin

µ,Λ
E

[
d∑

j=1

∂xj
g[x;µ,Λ]+2

d∑
j=1

(
∂2
xj
g[x;µ,Λ]

)2]
.



The Final Estimator Is Sparse and Scalable
(Extremes in high dimensions: methods and scalable algorithms, 2023)

(µ̂, Λ̂) ∈ argmin
µ,Λ{

n∑
i=1

∣∣∣∣∣∣(µ− 1− (Λ+Λ⊤ − diag[Λ1+Λ⊤1]) log[xi]
)
⊗ f1[xi]

∣∣∣∣∣∣2
2

+

n∑
i=1

(
µ− 1− (Λ+Λ⊤ − diag[Λ1+Λ⊤1]) log[xi]

)
⊗ f2[xi]

−
n∑

i=1

trace
[
(Λ+Λ⊤ − diag[Λ1+Λ⊤1])F [xi]

]
+ r prior[µ,Λ]

}

Can be computed within seconds (n ≈ 1000, d ≈ 20, p ≈ 200)
to minutes (n ≈ 100 000, d ≈ 100, p ≈ 5000) on a standard
laptop.



The Estimator Satisfies Finite-Sample
Guarantees Even in High Dimensions
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Theorem (Extremes): Under reasonable assump-
tions, such as r large enough, it holds that

||µ̂− µ∗||22 + |||Λ̂−Λ∗|||2F ≲
(
|Sµ∗|+ |SΛ∗ |

)
r2

n

with high probability.

=⇒ “sparsistency”



The Statistical Proofs Are “Geometric”
(Extremes in high dimensions: methods and scalable algorithms, 2023)

global geometry

submanifold geometry

local geometry

Curvature:

“ o[µ,Λ] ≈ µ2 + Λ2 ”

Cone:

“∆µ
S∁ ,Λ

S∁
≲ ∆µS ,ΛS ”

Basic oracle inequality:

“ ||∆µ,Λ ⊗ f1||22 ≤ r prior[∆µ,Λ] ”

Estimation bound:

“ ||µ̂− µ∗||22 + |||Λ̂−Λ∗|||2F ≲ r2/n ”





Diffusion Models Destroy and Rebuild
(Regularization can make diffusion models more efficient, 2025)

x0 xj−1 xj xt

original sample x0 ∼ p0[x] pure noise xt ∼ N [0, I]

. . . “xj−1 + uj−1” . . .

fΘ[xj , j]

forward process

backward process



The Forward Process Injects Noise
(Regularization can make diffusion models more efficient, 2025)

xj ··=
√

1− βj xj−1 +
√

βj uj−1

with white noise uj ∼ N [0d, Id] and noise schedule βj ∈ (0, 1)

The distribution of xj given an “original” sample x0 is

Qj[xj | x0] = N

[
xj;

( j∏
l=1

√
1− βl

)
x0,

(
1−

j∏
l=1

(1−βl)

)
Id

]



The Backward Process Recovers an Original
(Regularization can make diffusion models more efficient, 2025)

xj−1 =
1√

1− βj

(
xj + βj∇xj

log qj[xj]︸ ︷︷ ︸
“score”

)
+

√
βj

1− βj

zj

with the marginal density qj[xj] =
∫
qj[xj | x]p0[x] dx

and white noise zj ∼ N [0d, Id]



Standard Estimation Suffers From the
Curse of Dimensionality
(Regularization can make diffusion models more efficient, 2025)

Θ̂ ∈ argmin
Θ∈A

{
Ej∼U[0,t]

Xj∼Qj

[∣∣∣∣sΘ[Xj , j]−∇Xj
log qj [Xj ]

∣∣∣∣2
2

]}

Theorem (“Classical”): It holds with high probabil-
ity that

dKL[p0, p̂0] ≲
d2

t
.



Sparsity Breaks the Curse
(Regularization can make diffusion models more efficient, 2025)

(Θ̂, κ̂) ∈ argmin
Θ∈A1

κ∈(0,∞)

{
Ej∼U[0,t]

Xj∼Qj

[∣∣∣∣κsΘ[Xj , j]−∇Xj
log qj [Xj ]

∣∣∣∣2
2

]
+rκ

}

Theorem (Regularized): It holds with high proba-
bility that

dKL[p0, p̂0] ≲
s2

t
.



Regularization Makes a Visible Difference
(Regularization can make diffusion models more efficient, 2025)
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Goal: Select t and r simultaneously
(Balancing statistical and computational precision: a general theory and

(applications to sparse regression, 2023)

F̂R = {θ̂
r
: r ∈ R} theoretical estimators

d[θ̂
r
,θ∗] ≤ f[r] ∀ r ≥ r∗

F̃R = {θ̃
r

t : r ∈ R, t ∈ {1, 2, . . . }} practical estimators

d[θ̃
r

t , θ̂
r
] ≤ g[r, t] ∀ r ∈ R



A Surprisingly Concise Algorithm
(Balancing statistical and computational precision: a general theory and

(applications to sparse regression, 2023)

Inputs : R, f, g
Outputs: θ̃ ∈ F̃R, r̂ ∈ R

1 Initialize r̂ = maxR
2 Compute θ̃

r̂
= θ̃

r̂

t̂ with t̂ = min{t : g[r, t] ≤ f[r]}
3 Initialize θ̃ = θ̃

r̂

t̂

4 while r̂ ̸= minR AND

5 ̸ ∃ r ∈ R\(−∞, r̂] : d[θ̃
r

t̂ , θ̃
r̂

t̂ ] > f[r]+g[r, t̂]+f[r̂]+g[r̂, t̂]
do

6 Update θ̃ = θ̃
r̂

t̂

7 Go to r̂ = max{R \ [r̂,∞)}
8 Compute θ̃

r̂
= θ̃

r̂

t̂ with t̂ = min{t : g[r, t] ≤ f[r]}
9 end



We Have Optimal Theoretical Guarantees
(Balancing statistical and computational precision: a general theory and

(applications to sparse regression, 2023)

Theorem (Optimality): It holds that

d[θ̃,θ∗] ≤ 6 f[r∗] .



The Theorem Has a Short, Elementary Proof

Consider r̂ with θ̃
r̂
= θ̃ (we omit t̃ for ease of notation)

If r̂ > r∗, then ∃ r′, r′′ ≥ r∗ such that

d[θ̃
r′

, θ̃
r′′

] > f[r′] + g[r′] + f[r′′] + g[r′′] .



The Theorem Has a Short, Elementary Proof

Consider r̂ with θ̃
r̂
= θ̃ (we omit t̃ for ease of notation)

If r̂ > r∗, then ∃ r′, r′′ ≥ r∗ such that

d[θ̃
r′

, θ̃
r′′

] > f[r′] + g[r′] + f[r′′] + g[r′′] .

But

d[θ̃
r′

, θ̃
r′′

]

≤ d[θ̃
r′

,θ∗] + d[θ̃
r′′

,θ∗]

≤ d[θ̂
r′

,θ∗]︸ ︷︷ ︸
stat

+ d[θ̃
r′

, θ̂
r′

]︸ ︷︷ ︸
opti

+ d[θ̂
r′′

,θ∗]︸ ︷︷ ︸
stat

+ d[θ̃
r′′

, θ̂
r′′

]︸ ︷︷ ︸
opti

≤ f[r′] + g[r′] + f[r′′] + g[r′′] .



The Theorem Has a Short, Elementary Proof

Recall that r̂ ≤ r∗. Hence,

d[θ̃
r̂
,θ∗]

≤ d[θ̃
r̂
, θ̃

r∗

]︸ ︷︷ ︸
algorithm

+ d[θ̃
r∗

,θ∗]︸ ︷︷ ︸
stat&opti

≤ f[r̂] + g[r̂] + f[r∗] + g[r∗] + f[r∗] + g[r∗]

≤ 3 f[r∗] + 3 g[r∗] ≤ 6 f[r∗] .



Works Like a Charm for the Lasso
(Balancing statistical and computational precision: a general theory and

(applications to sparse regression, 2023)
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This textbook introduces the fundamental concepts and methods of statistical learning. 
It uses Python and provides a unique approach by blending theory, data examples, 
software code, and exercises from beginning to end for a profound yet practical 
introduction to statistical learning.

The book consists of three parts: The first one presents data in the framework of probability 
theory, exploratory data analysis, and unsupervised learning. The second part on inferential 
data analysis covers linear and logistic regression and regularization. The last part studies 
machine learning with a focus on support-vector machines and deep learning. Each 
chapter is based on a dataset, which can be downloaded from the book's homepage.

In addition, the book has the following features:

 • A careful selection of topics ensures rapid progress.
 • An opening question at the beginning of each chapter leads the reader through 

the topic.
 • Expositions are rigorous yet based on elementary mathematics.
 • More than two hundred exercises help digest the material.
 • A crisp discussion section at the end of each chapter summarizes the key 

concepts and highlights practical implications.
 • Numerous suggestions for further reading guide the reader in finding additional 

information.

ISBN 978-3-031-30275-6
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Extreme-Value Theory Is Not Extrapolation
(Extremes in high dimensions: methods and scalable algorithms, 2023)
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New Densities Disentangle the Parameters
(Extremes in high dimensions: methods and scalable algorithms, 2023)

Theorem: Every Hüsler-Reiss density is of the
form

1

cµ,Λ

(
d∏

j=1

1

xj

)
exp
[
µ⊤ log[x]

− 1

2
log[x]

(
Λ+Λ⊤ − diag(Λ1+Λ⊤1)

)
log[x]

]
.

• µ ∈ Rd: shifts

• Λ ∈ Rd×d (upper triangular): dependences

• cµ,Λ: normalization



We Develop a Score-Matching Approach
That Satisfies the Boundary Conditions
(Extremes in high dimensions: methods and scalable algorithms, 2023)

log[x] x ∈ X

argminµ,Λ E
[∣∣∣∣(∇x log h[x;µ,Λ]−∇x log h[x]

)
⊗x⊗ log[x]︸ ︷︷ ︸

w[x]

∣∣∣∣2
2

]



The Estimator Behaves as Intended
and can Be Computed Super Fast
(Extremes in high dimensions: methods and scalable algorithms, 2023)

n = 500, d = 20, p = 190

r 1000
√

log[d]
n 100

√
log[d]
n 10

√
log[d]
n 1

√
log[d]
n 0.1

√
log[d]
n 0.01

√
log[d]
n 0

||Λ̂||0/(d(d− 1)/2) 33.9%± 2.7% 63.1%± 3.7% 96.0%± 1.3% 99.7%± 0.5% 100.0%± 0.1% 100.0%± 0.1% 100.0%± 0.1%

tpre + topt (s) < 0.01 s± 0.01 s + 0.83 s± 0.11 s

n = 50000, d = 80, p = 3160

r 1000
√

log[d]
n 100

√
log[d]
n 10

√
log[d]
n 1

√
log[d]
n 0.1

√
log[d]
n 0.01

√
log[d]
n 0

||Λ̂||0/(d(d− 1)/2) 79.9%± 0.7% 98.0%± 0.3% 99.8%± 0.1% 100.0%± 0.0% 100.0%± 0.0% 100.0%± 0.0% 100.0%± 0.0%

tpre + topt 35.65 s± 2.72 s + 199.14 s± 17.59 s
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