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1. Introduction.

1.1. Traditional Principal Components.

One of the earliest techniques in multivariate analysis—it can be traced back to

Pearson (1901 and Hotelling (1933)—Principal Component Analysis (PCA)

probably remains the most popular and widespread tool in the area, with

countless applications in all disciplines.

A major motivation for PCA is, of course, dimension reduction; but it also serves

as an instrument in a variety of other data-analytical methods such as factor,

cluster, and discriminant analysis, principal component regression, noise

reduction, etc.

Principal Components are defined via the spectral decomposition of covariance

matrices. They achieve an important Karhunen-Loève optimality

property—projecting a d-dimensional variable X on the linear space spanned by

its k < d first principal components yields the best k-dimensional linear

approximation of X.

This, at first sight, provides a strong theoretical justification for the method.
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Away from elliptical symmetry, PCA has a number of weaknesses, though:

• it requires finite moments of order 2 (hence is poorly robust and precludes the

analysis of heavy-tailed observations);

• it is “centered” at the mean, which for distributions with asymmetric and

non-convex shapes may not provide the best centering and lie outside the

support of the distribution under study;

• the criterion used—maximization of the variance of projections—is intrinsically

two-sided, which does not take into account the possible asymmetries of the

data.

Above all,

• it is a highly linear technique, involving straight lines, linear combinations, linear

projections, ... the L2 geometry induced by covariance/correlation matrices.

Actually, PCA is a perfect tool for elliptically symmetric variables with finite

second-order moments ...

... but elliptical symmetry is a very strong assumption!
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Based on measure transportation ideas, we are proposing a new concept of

“Principal Curves,” which

• does not require finite second-order moments

• is fully nonlinear (with self-induced (via monotone transportation)

nonlinearities—data-driven in the sample)

• is centered at a measure-transportation-based median region (in dimension

d > 4, not necessarily a point)

• is “directional,” that is, sequentially selects 2d oriented “halfcurves,” taking

asymmetries into account, rather than d full straight lines that don’t.

1.2. Principal Curves versus Principal Components.

Below are some (simulation-based) illustrations of the differences between

classical Principal Components and the proposed Principal Curves.
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Under non-elliptical and heavy-tailed distributions, traditional Principal

Components, typically, do a poor job while nonlinear alternatives do much

better.

PC2

PC1

Nonlinear versus linear. A banana-shaped distribution: traditional PC (green);

Principal Curve (Hastie and Stuetzle (1989), magenta); neural network approach

(Scholz et al. (2005), Hinton and Salakhutdinov (2006), orange); Gunsilius and

Schennach (2023, red); measure-transportation-based PC (blue)
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PC2

PC1

Robustness issues. A noisy version of the same banana-shaped distribution;

Principal Curve (Hastie and Stuetzle (1989), magenta); neural network approach

(Scholz et al. (2005), Hinton and Salakhutdinov (2006), orange); Gunsilius and

Schennach (2023, red); measure-transportation-based PC (blue). The noise

badly impacts the concepts that are not based on measure transportation
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2. Principal components: from bidirectional linear to directional nonlinear

2.1. An elliptical reformulation of classical definitions

The most natural context for PCA is the family of elliptically symmetric densities,

which suggests a presentation of the classical concept under the assumption of

elliptical symmetry.

This approach, as we shall see, will naturally extend to a nonlinear, nonelliptical

context.
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Notation

• X := (X1 . . . , , Xd)
′ a d-dimensional elliptical random vector with location 0,

full-rank scatter matrix Σ, and radial density f—the density of the

modulus (X′Σ−1X)1/2 =: ‖Σ−1/2X‖

• PΣ,f the elliptical distribution of Xi

• Ff : t 7→ Ff(t) :=
∫ t
0 f(u)du = PΣ,f

[

‖Σ−1/2X‖ ≤ t
]

, t ∈ R+ the corresponding

radial distribution function,

• Λ = Diag(λ1, . . . , λd) the diagonal matrix of eigenvalues of Σ in decreasing

order of magnitude (for simplicity, assume that they are all distinct),

• P1, . . . ,Pd the corresponding eigenvectors, and

• P the d× d orthogonal matrix with columns Pi, i = 1, . . . , d;

let Σ1/2 := P′Λ1/2P.

Then, Σ−1/2X is spherical with radial density f and radial distribution function Ff
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Since Σ−1/2X is spherical with radial distribution function Ff,

U := Ff

(

‖Σ−1/2X‖
) Σ−1/2X

‖Σ−1/2X‖

is spherical uniform over the unit ball Sd —which we denote as U ∼ Ud.

In the terminology of measure transportation, the transformation

TΣ,f : x 7→ TΣ,f(x) := Ff

(

‖Σ−1/2x‖
) Σ−1/2x

‖Σ−1/2x‖
=: Ff

(

‖Σ−1/2x‖
)

TΣ(x)

mapping X to U is a transport map pushing PΣ,f forward to Ud—in general, not

the gradient of a convex function, though, hence not an optimal transport in the

sense of Monge and Kantorovich, nor a monotone transport in the sense of

McCann.

Notation:

TΣ,f#P = Ud.
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A brief history (four chapters) of measure transportation

Chapter 1. Gaspard Monge

Starting from very practical problems, Gaspard Monge, in 1781, with his Mémoire

sur la Théorie des Déblais et des Remblais, initiated a profound mathematical

theory anticipating different areas of differential geometry, linear programming,

nonlinear partial differential equations, and probability
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In 1781, Gaspard Monge (1746-1818) was teaching mathematics at the Ecole

Royale du Génie, a French military engineering school. During the French

Revolution and the Empire, he developed quite an active political career: he

went with Bonaparte in Italy then in Egypt; he served as a Minister (Navy), and

was involved in the reform of the French educational system, the foundation of

the Ecole Polytechnique, where he taught for many years, and the Ecole

Normale Supérieure
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Monge’s 1781 Mémoire was motivated by a very practical problem: how do you

best move a given pile of sand to fill up a given hole of the same total volume?

The simplest and most intuitive abstract formulation of Monge’s problem is as

follows

Let P1 and P2 denote two probability measures over (for simplicity) (Rd,Bd).

Let L : R2d → [0,∞] be a Borel-measurable loss function: L(x1,x2) represents the

cost of transporting x1 to x2.

• find a measurable transport map TP1;P2
: Rd → Rd that achieves the infimum

inf
T

∫

Rd

L(x, T (x))dP1 subject to T#P1 = P2

where T#P1 denotes the “push forward of P1 by T”—a more classical statistical

notation for this would be PTX

1 = P2.
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• A map TP1;P2
that attains this infimum is called an “optimal transport map”, in

short, an“optimal transport”, of P1 into P2.

• In the sequel, we restrict to the L2 loss function L(x1,x2) = ‖x1 − x2)‖22 (Monge

was considering the more difficult loss L(x1,x2) = ‖x1 − x2)‖2).

The problem looks simple, but it isn’t (leads to the so-called Monge-Ampère

equations, which are nonlinear PDEs); Monge actually could not solve it.
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Chapter 2. Leonid Kantorovich

One century and a half later, Monge’s problem was revisited in the 1940s by

Leonid Vitalievitch Kantorovich (1912-1986; Nobel Prize in Economics in 1975) in

relation to the economic problem of optimal allocation of resources.
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The fundamental idea behind Kantorovich’s approach (when he did it,

Kantorovich was not aware of Monge’s contribution) consists in relaxing Monge’s

problem into the more general one of constructing a distribution γP1P2
on

Rd × Rd (Kantorovich considers abstract metric spaces) minimizing

∫

‖x− y‖2dγ

(equivalently, maximizing
∫

〈x,y〉dγ)

among the family Γ(P1,P2) of all γ’s having marginals P1 and P2, then showing

that the solution is of the form

γP1P2
= (identity × T )#P1 = (P1, T#P1)

where T#P1 = P2 for some mapping (some transport) T . This solution, thus, is the

distribution of a variable

(X, T (X)) where X ∼ P1,

which is supported on the graph of x 7→ T (x)—so that T is indeed a solution of

Monge’s problem.
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The huge advantage of this new formulation is that the class Γ(P1,P2) of feasible

solutions now is convex, so that the problem reduces to a linear optimization

problem over a convex set for which Kantorovich develops a powerful duality

approach.
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Chapter 3. Yann Brenier

The topic attracted a renewed surge of interest in the 1990s. Still for the quadratic

loss function,

• Cuesta-Albertos and Matrán (1989) established (under continuity assumptions

and the existence of finite second-order moments) the existence of solutions for

Monge’s problem;

• Rüschendorf, and Rachev (1990) characterized these solutions in terms of

gradients of convex (potential) functions.

• Brenier (1991), with his celebrated polar factorization theorem, independently

obtained the same results and, moreover, proved the (a.s.) uniqueness of the

solution.
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Brenier’s Polar Factorization Theorem, in the present context, implies that, for L2

loss, if P1 and P2 are absolutely continuous with finite second-order moments,

the solution exists, is (a.e.) unique, and is the gradient ∇ψ of some convex

(potential) function ψ—a form of multivariate monotonicity .
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All this, however, is about Monge’s optimization problem with L2 transportation

costs, and therefore only makes sense under finite moments of order 2 (hence

compactly supported distributions).

A completely different approach was taken, in 1995, by Robert J. McCann,

offering a fresh approach to the problem.
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Chapter 4. Robert McCann

McCann had the intuition that the problem is of a geometric rather than

analytical nature. His main result (McCann 1995) implies that

(i) for any given (absolutely continuous—no second order moments needed) P1

and P2, there exists a P1-essentially unique element ∇ψ in the class of gradients

of convex functions mapping P1 to P2 (such that ∇ψ#P1 = P2);

(ii) under the existence finite moments of order two, that mapping moreover

coincides with the L2-optimal transport of P1 to P2.
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This is the result opening the door to statistical applications of measure

transportation.

[back to the elliptical presentation of classicla principal components]
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In the terminology of measure transportation, the transformation

TΣ,f : x 7→ TΣ,f(x) := Ff

(

‖Σ−1/2x‖
) Σ−1/2x

‖Σ−1/2x‖
=: Ff

(

‖Σ−1/2x‖
)

TΣ(x)

mapping X to U is a transport map pushing PΣ,f forward to Ud—in general, not

the gradient of a convex function, though, hence not an optimal transport in the

sense of Monge and Kantorovich, nor a monotone transport in the sense of

McCann.

Notation:

TΣ,f#P = Ud.
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That transport map factorizes into the product

TΣ,f = F
f
± ◦TΣ

where TΣ is the linear transformation x 7→ Σ−1/2x and F
f
± the radial

transformation x 7→ Ff (‖x‖)x/‖x‖.

This suggests an alternative description of X’s principal components, formally

bypassing the recourse to the eigenvectors and eigenvalues of Σ.

Denoting by Sd−1 the unit hypersphere in Rd and assuming that f is strictly

positive over the positive real line R+ (this can be relaxed, e.g. to strictly positive

on an interval (0, T ) for some 0 < T < ∞) so that TΣ,f is invertible, define

±U1; ell := argmaxu∈Sd−1
E

[

∥

∥

∥
T−1

Σ,f(̺u)
∥

∥

∥

2
]

and

±Ui; ell := argmax
Sd−1∋u⊥Uj; ell, j=1,...,i−1

E

[

∥

∥

∥
T−1

Σ,f(̺u)
∥

∥

∥

2
]

i = 2, . . . , d

where ̺ is uniform over [0, 1].
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Based on this, define the ith principal halflines of X (of P) as

L+
i := {T−1

Σ,f(rUi; ell)|r ∈ R+} and L−
i := {T−1

Σ,f(−rUi; ell)|r ∈ R+}.

The ith principal component of X ∼ PΣ,f then is

Pi := ±〈Ui; ell,X〉Ui; ell,

the signed projection of X on ±Ui; ell or the halflines ±L+
i .

Considering i = 1, we have

±U1; ell := argmax
u∈Sd−1

E

[

∥

∥

∥
T−1

Σ,f(̺u)
∥

∥

∥

2
]

= argmax
u∈Sd−1

E

[

∥

∥

∥
T−1

Σ
(F−1

f
(̺))u

∥

∥

∥

2
]

= argmax
u∈Sd−1

E

[

(

F−1
f

(̺)
)2

‖Σ1/2u‖2
]

= argmax
u∈Sd−1

[

u′Σu
]

= ±P1,

where P1 is P’s traditional first principal direction (Σ’s first eigenvector).

The case for i = 2, . . . , d is entirely similar.

As for the maximum in the definition of ±Ui; ell, it is easily seen to be σ2
f
λi,

i = 1, . . . , d, where λi is Σ’s ith eigenvalue.
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This, which, for an elliptical distribution P, constitutes an alternative definition of

the classical concept of principal components, involves the transport

TΣ,f = F
f
± ◦TΣ

pushing the elliptical P to the uniform Ud over the unit ball.

That transport, however,

• makes no sense for a nonelliptical P (no radial distribution available)

• in general, is not the gradient of a convex function,a hence is neither optimal

(in the sense of Monge and Kantorovitch) nor monotone (in the sense of

Mc Cann—that is, cyclically monotone).

a
unless Σ is a multiple of Id
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The transport map TΣ,f
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The monotone transport map F±
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The transport map TΣ,f
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The monotone transport map F±
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2.2. Nonelliptical case: a measure-transportation-based definition

The idea is very simple: in the sequential choice of principal directions, replace

the non-optimal linear transport

TΣ,f : x 7→ TΣ,f(x) := Ff

(

‖Σ−1/2x‖
) Σ−1/2x

‖Σ−1/2x‖
=: Ff

(

‖Σ−1/2x‖
)

TΣ(x)

pushing an elliptical P forward to Ud with the optimal transport F± pushing an

elliptical as well as nonelliptical P forward to Ud.

About pushing P forward to Ud, McCann (1985) tells us the following
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Let X ∼ P be Lebesgue-absolutely continuous with (for simplicity of exposition:

this can be relaxed) nonvanishing density.

(i) there exists a P-almost unique gradient of convex function FP± such that

FP±#P = Ud.

(ii) Moreover, if Var(X) <∞, then FP± minimizes (the expected transport cost)

∫

Rd

‖x− F(x)‖2dP(x)

among all mappings F from Rd to Sd such that F#P = Ud.

Figalli (2018) moreover showed that

(iii) FP± is a homeomorphism between Sd \ {0} and Rd \ {FP±(0)}, hence

admits an a.s. unique continuous inverse Q±—the a.s. unique gradient of

convex function such that Q±#Ud = P.

Finally,

(iv) For d = 1, FP± = 2FP − 1.
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This suggests the following definitions (Hallin, del Barrio, Cuesta-Albertos, and

Matrán, Annals of Statistics 2021) for a center-outward distribution function and a

center-outward quantile function in dimension d.

Let X ∼ PX be absolutely continuous over Rd. Call center-outward distribution

function of PX the a.e. unique gradient of convex function FP± pushing PX

forward to the spherical uniform Ud over Sd.

If PX, e.g., has nonvanishing density over a convex support, it follows from Figalli

(2018) that FP± is a homeomorphism between Sd \ {0} and Rd \ F−1
P±({0}),

hence has a continuous (on Sd \ {0}) inverse QP± which is also the continuous

(on Rd \ F−1
P±({0})) gradient of a convex function.

Call QP± the center-outward quantile function of PX.
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F±

−−−−−−−−−−→

←−−−−−−−−−−−−

Q±

−3 −2 −1 0 1 2 3

−
2

0
2

4

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

τ = — 0.146 — 0.268 — 0.39 — 0.634 — 0.878
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For d > 4, moreover, QP±({0}) := F−1
P±({0}) could be a compact set with

measure zero, with a discontinuity at r = 0 of r 7→ Q±(ru):

... which calls for disentangling u and −u and adopting a directional (oriented)

definition of principal directions (curves).
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Our definition of nonlinear directional principal curves mimics the previously

given elliptical definition traditional principal components, but

• replaces the “linear” non-optimal transport TΣ,f with the optimal one F±

• selects 2d half-curves instead of d full straight lines

• based on expected curve length

• replaces linear inner products and orthogonal projections with “curvilinear”

ones
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Assume, for simplicity, that P belongs to the family Pd
± of Lebesgue-absolutely

continuous distributions with support Rd and density f such that, for any

compact subset C of Rd, there exists constants 0 < bC < BC < ∞ such

that bC ≤ f(x) ≤ BC for all x ∈ C (these are the assumptions made in Figalli

(2018) to obtain homeomorphisms; they can be relaxed).

Denote by F± and Q± the center-outward distribution and quantile functions

of P, the existence of which does not require any assumption of elliptical

symmetry nor finite variance:

F±#P = Ud Q±#Ud = P.

Define, parallel to what we did before based on TΣ,f, the first nonlinear

directional principal direction of P (of X ∼ P) as

U±,1 := argmax
u∈Sd−1

E
[

L2 (Q±(ρu))
]

where

L2 (Q±(ru)) :=

[∫ r

0

∥

∥

∥

∥

d

dt
Q±(tu)

∥

∥

∥

∥

dt

]2

, r ∈ (0, 1).

with ρ ∼ U[0,1] and
d

dt
Q±(tu) :=

( d

dt
Q±,1(tu), . . . ,

d

dt
Q±,d(tu)

)′
.
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Similarly define the ith nonlinear directional principal direction of P (of X ∼ P) as

U±,i := argmax
Sd−1∋u⊥U

+
i−1

or u∈−U
+
i−1

\U
+
i−1

E
[

L2 (Q±(ρu))
]

i = 2, . . . , 2d

Note that L2 (Q±(ru)) is the squared length of the image (a curve) by Q± of the

interval (0, ru]. The criterion to be maximized is the expected squared curve

length E[L2(Q±(ρu))] instead of the expected squared modulus E[‖T−1
Σ,f(̺u)‖

2].

Associated with the ith principal direction U±,i, define the ith principal curve

of P (of X ∼ P) as the image L±,i :=
{

Q±(rUi)|r ∈ (0, 1)
}

of the radius

{rUi|r ∈ (0, 1)} by the quantile function Q±—the nonlinear counterpart of the

principal halfline L+
i .

Finally, define the ith directional non-linear principal component of P (of X ∼ P)

as

P±,i :=

∫ ‖F±(X)‖

0

〈

d
dt

Q±(tU±,i)

‖ d
dt

Q±(tU±,i)‖
,
d

dt
Q±

(

t
F±(X)

‖F±(X)‖

)

〉

dt i = 1, . . . , 2d.
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The integrand
〈

d
dt

Q±(tU±,i)

‖ d
dt

Q±(tU±,i)‖
,
d

dt
Q±

(

t
F±(X)

‖F±(X)‖

)

〉

is the modulus of the projections of the derivative wrt t, computed

at tF±(X)/‖F±(X)‖, of the image by Q± of a point in the unit ball moving from

0 to F±(X) along the radius pointing to F±(X) onto the tangent to the image by

Q± of the ith principal directions U±,i.

That integral, therefore, can be interpreted as the length of a nonlinear

projection of X onto L±,i.
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2.3. Comparison with Gunsilius and Schennach (JASA 2023)..

Another measure-transportation-based approach has been taken by Gunsilius

and Schennach (JASA 2023).

At population level, it consists of

• considering the optimal transport T : Rd → Rd between X ∼ P with density f

and Y ∼ N (0, I);

• selecting thedirections ui, i = 1, . . . , d as the eigenvectors of the average

log-Jacobian matrix

J̄ :=

∫

f(x) ln(J(x))dx

of the inverse mapping T−1, where J(x) := ∇T(x), and ln(J(x)) is the matrix

logarithm of the positive definite matrix J(x); these directions are maximizing,

subject to the usual orthogonality constraints, their “contribution”

Hui
= c+ ui?J̄ui

to the entropy Hf of f (c is a constant corresponding to entropy of Gaussian

distribution).

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS – p. 39/45



A comparison with our approach is not straightforward:

• their reference distribution is the spherical Gaussian, not the spherical uniform;

• they are selecting couples ±u of directions, not directions;

• their criterion (for direction u) involves the whole space Rd, while we are using

only the Q± image of u (a curve), yielding the expected spread along that

curve.

Our criterion, which selects principal directions ui on the basis of the expected

length of the sign curve running from Q±(0+) to Q±(X) is more closely in line

with the traditional definition.
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2.4. Empirical version.

Based on empirical transport to a regular grid of the unit ball and discrete

approximations of the integral criterion involved.

[in progress – details skipped]
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3. A real data application: drivers’ profiles

Traffic data collected by a loop detector at a fixed vehicle detector station (VDS

number 1202263) on Line 5 of the California Freeway SR57-N. The observations

span from 9:00 AM on July 9, 2007, to 10:00 PM on July 10, 2007. Originally

recorded at 30-second intervals, the data were aggregated into 5-minute

intervals. Each point in the dataset represents a 5-minute interval and includes

two variables: flow, the number of vehicles passing the detector, and speed, the

average speed (in miles per hour) of those vehicles. This forms a “fundamental

diagram” of traffic, showing the relationship between traffic flow and speed.

[1] Einbeck, J.; Evers, L. LPCM: Local Principal Curve Methods. R Package Version

0.47-4. Available online: https://CRAN.R-project.org/package=LPCM (accessed

on 5 March 2024).
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Principal directions for the California traffic flow data:

X1 = flow, X2= average speed.

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS – p. 43/45



20 40 60 80 100 120 140

2
0

3
0

4
0

5
0

6
0

Lane5Flow

L
a
n
e
5
S

p
e
e
d

One-dimensional approximations of the California traffic flow data. Our first two

one-sided principal curves (red), the Gunsilius and Schennach first optimal curve

(blue), the principal curves of Hastie and Stuetzle (magenta) and the neural

network principal curve of Scholz et al. (yellow), and the first traditional principal

component (green).
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4. Conclusions

• Traditional principal component concepts are deeply marked by the linearity

and symmetry properties stemming from implicit Gaussian or elliptical

assumptions;

• imposing such linear features is fine under Gaussian or elliptical distributions, but

they are inappropriate under nonelliptical ones, for which they lead to

misleading conclusions;

• our measure-transportation-based concepts are replacing the linear features

imposed by the classical definitions with self-generated nonlinearities and

proceed with one-sided selections of principal directions, which accounts for

possible asymmetries;

• getting rid of all linearity features, we are losing an important feature of

classical Principal Components: uncorrelatedness—a feature that makes no

sense, though, in this nonlinear context.
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