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l. Infroduction.

1.1. Traditional Principal Components.

One of the earliest techniques in multivariate analysis—it can be traced back to
Pearson (1901 and Hotelling (1933)—Principal Component Analysis (PCA)
probably remains the most popular and widespread tool in the areq, with
countless applications in all disciplines.

A major motivation for PCA is, of course, dimension reduction; but it also serves
as an instrument in a variety of other data-analyfical methods such as factor,
cluster, and discriminant analysis, principal component regression, noise
reduction, efc.

Principal Components are defined via the spectral decompaosition of covariance
matrices. They achieve an important Karhunen-Loeve optimality
property—projecting a d-dimensional variable X on the linear space spanned by
its k < d first principal components yields the best k-dimensional linear
approximation of X.

This, at first sight, provides a strong theoretical justification for the method.
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Away from elliptical symmetry, PCA has a number of weaknesses, though:

e it requires finite moments of order 2 (hence is poorly robust and precludes the
analysis of heavy-tailed observations);

e it is "centered” at the mean, which for distributions with asymmeftric and
non-convex shapes may not provide the best centering and lie outside the
support of the distribution under study:;

e the criterion used—maximization of the variance of projections—is infrinsically
two-sided, which does not take into account the possible asymmetries of the
data.

Above all,

e it is @ highly linear technique, involving straight lines, linear combinations, linear
projections, ... the L2 geometry induced by covariance/correlation matrices.

Actually, PCA is a perfect tool for elliptically symmetric variables with finite

second-order moments ...

... but elliptical symmetry is a very strong assumption!
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Based on measure fransporftation ideas, we are proposing a new concept of
"Principal Curves,” which
e does not require finite second-order moments

e is fully nonlinear (with self-induced (via monotone transportation)
nonlinearities—data-driven in the sample)

e is centered at a measure-transportation-based median region (in dimension
d > 4, not necessarily a point)

e is "directional,” that is, sequentially selects 2d oriented “halfcurves,” faking
asymmetries info account, rather than d full straight lines that don’t.

1.2. Principal Curves versus Principal Components.

Below are some (simulation-based) illustrations of the differences between
classical Principal Components and the proposed Principal Curves.
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Under non-elliptical and heavy-tailed distributions, traditional Principal
Components, typically, do a poor job while nonlinear alternatives do much
better.

PC;

Nonlinear versus linear. A banana-shaped distribution: traditional PC (green);
Principal Curve (Hastie and Stuetzle (1989), magenta); neural network approach
(Scholz et al. (2005), Hinton and Salakhutdinov (2006), orange); Gunsilius and
Schennach (2023, red); measure-transportation-based PC (blue)
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PC

PC>

Robustness issues. A noisy version of the same banana-shaped distribution;
Principal Curve (Hastie and Stuetzle (1989), magenta); neural network approach
(Scholz et al. (2005), Hinton and Salakhutdinov (2006), orange); Gunsilius and
Schennach (2023, red); measure-transportation-based PC (blue). The noise
badly impacts the concepts that are not based on measure fransportation
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2. Principal components: from bidirectional linear to directional nonlinear

2.1. An elliptical reformulation of classical definitions

The most natural context for PCA is the family of elliptically symmetric densities,
which suggests a presentation of the classical concept under the assumption of
elliptical sysmmetry.

This approach, as we shall see, will naturally extend to a nonlinear, nonelliptical
context.
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Notation

=(X1...,,Xg) ad-dimensional elliptical random vector with location 0,
full-rank scatfter matrix 32, and radial density f—the density of the
modulus (X/E-1X)1/2 = |=—1/2X||

e Ps ; the ellipfical distribution of X;

o F}: t— Fi(t) := [} f(u)du = Px [||2 12X < t} t € R4 the corresponding
radial distribution function,

e A =Diag(\1, ..., Ag) the diagonal matrix of eigenvalues of 3 in decreasing
order of magnitude (for simplicity, assume that they are all distinct),

e P,..., P, the corresponding eigenvectors, and

e P the d x d orthogonal matrix with columns P;,i=1,...,d;
let =1/2 .= P/AL/2P.

Then, X~ 1/2X is spherical with radial density f and radial distribution function F;
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Since X ~1/2X is spherical with radial distribution function Fj,

»-1/2x
|=-12X|

U= F (I=712x])
is spherical uniform over the unit ball S; —which we denote as U ~ Uy.
In the ferminology of measure transportation, the fransformation

2_1/2x
I=—12x|

Tsj: x> Ty i(x) = F (I|Z7/2x]))  F (I37Y2x]) Ts(x)

mapping X to U is a fransport map pushing Ps; ; forward fo U,;—in general, not
the gradient of a convex function, though, hence not an opfimal transport in the
sense of Monge and Kantorovich, nor a monotone transport in the sense of
McCann.

Notation:
Ts ;#P = Uy.
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A brief history (four chapfters) of measure fransporfation

Chapter 1. Gaspard Monge

Starting from very practical problems, Gaspard Monge, in 1781, with his Memoire
sur la Théorie des Deblais et des Remblais, initiated a profound mathematical
theory anfticipating different areas of differential geometry, linear programming,
nonlinear partial differential equations, and probability

€66 MEMOIRES DE LAcCADEMIE ROYALE

MEMOIRE

SUR LA

THEORIE DES DEBLAIS
ET DES REMBLAIGS

ParM.TMONGE.

oRrsQU'ON doit tranfporter des terres d'un lien dans un
L autre, on a coutume de donner le nom de Déblai au
volume des terres que I'on doit tranfporter, & le nom de
Remblai a Vefpace qu'elles doivent occuper apres le trani:po‘l“t.
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In 1781, Gaspard Monge (1746-1818) was teaching mathematics at the Ecole
Royale du Génie, a French military engineering school. During the French
Revolution and the Empire, he developed quite an active political career: he
went with Bonaparte in [taly then in EQypft; he served as a Minister (Navy), and
was involved in the reform of the French educational system, the foundation of
the Ecole Polytechnique, where he taught for many years, and the Ecole
Normale Supérieure
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Monge’s 1781 Mémoire was motivated by a very practical problem: how do you
best move a given pile of sand to fill up a given hole of the same total volume?
The simplest and most intuitive abstract formulation of Monge'’s problem is as
follows

Let P; and Py denote two probability measures over (for simplicity) (R%, B4).

Let L : R?4 — [0, co] be a Borel-measurable loss function: L(x1,x2) represents the

cost of tfransporting x; to xa.

o find a measurable transport map Te, .p, : RY — R? that achieves the infimum

ir%f/ L(x,T(x))dP; subjectto T#P; = P2
RrRd

where T#P, denotes the “push forward of Py by T"—a more classical statistical
notation for this would be PT* = P,.
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e Amap Tp,.p, that attains this infimum is called an “optimal transport map”, in
short, an"optimal fransport”, of Py into Pa.

e In the sequel, we restrict to the L? loss function L(x1,x2) = ||x1 — x2)||3 (Monge
was considering the more difficult loss L(x1,x2) = ||x1 — x2)[[2).

The problem looks simple, but it isn’t (leads to the so-called Monge-Ampeére
equations, which are nonlinear PDEs); Monge actually could not solve it.
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Chapter 2. Leonid Kantorovich

One century and a half later, Monge’s problem was revisited in the 1940s by
Leonid Vitalievitch Kantorovich (1912-1986; Nobel Prize in Economics in 1975) in
relation to the economic problem of optimal allocatfion of resources.
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The fundamental idea behind Kantorovich’s approach (when he did if,
Kantorovich was not aware of Monge’s contribution) consists in relaxing Monge’s
problem into the more general one of constructing a distrioution yp, p, on

R4 x R? (Kantorovich considers abstract metric spaces) minimizing

/ Ix — yl2dy

(equivalently, maximizing [ (x, y)dy)

among the family T'(P1, P2) of all v’s having marginals P; and P2, then showing
that the solution is of the form

fYPlPQ — (IdeﬂTlTy X T)#Pl = (PlaT#Pl)

where T#P, = P2 for sone mapping (some transport) T'. This solution, thus, is the
distribution of a variable

(X, T(X)) where X ~ Py,

which is supported on the graph of x — T'(x)—so that T' is indeed a solution of
Monge's problem.
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The huge advantage of this new formulation is that the class I'(P1, P2) of feasible
solutions now is convex, so that the problem reduces to a linear optimization
problem over a convex set for which Kanftorovich develops a powerful duality
approach.

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS - p. 16/45



Chapter 3. Yann Brenier

The topic atftracted a renewed surge of interest in the 1990s. Still for the quadratic
loss function,

e Cuesta-Albertos and Matran (1989) established (under continuity assumptions
and the existence of finite second-order moments) the existence of solutions for
Monge’s problem;

e RUschendorf, and Rachev (1990) characterized these solutions in terms of

gradients of convex (potential) functions.

e Brenier (1991), with his celebrated polar factorization theorem, independently
obtained the same results and, moreover, proved the (a.s.) uniqueness of the
solution.
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Brenier’s Polar Factorization Theorem, in the present context, implies that, for L2
loss, if P1 and Py are absolutely continuous with finite second-order moments,
the solution exists, is (a.e.) unique, and is the gradient V1 of some convex
(potential) function y—a form of multivariate monotonicity .
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All this, however, is about Monge’s optimization problem with L? tfransportation
costs, and therefore only makes sense under finite moments of order 2 (hence
compactly supported distributions).

A completely different approach was taken, in 1995, by Robert J. McCann,
offering a fresh approach to the problem.
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Chapter 4. Robert McCann

McCann had the intuition that the problem is of a geometric rather than
analytical nature. His main result (McCann 1995) implies that

() for any given (absolutely confinuous—no second order moments needed) P,
and Ps, there exists a P-essentidlly unique element YV in the class of gradients
of convex functions mapping P 1o Po (such that Vy#P1 = P2);

(i) under the existence finite moments of order two, that mapping moreover
coincides with the L2-optimal tfransport of P to Ps.
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This is the result opening the door to statistical applications of measure
fransportation,

(back to the elliptical presentation of classicla principal components)
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In the ferminology of measure transportation, the fransformation

2_1/2)(
|=—12x|

Ts;: x> Ty (x) = F} (||2_1/2x||) . F (||2_1/2x||) T (x)

mapping X to U is a fransport map pushing Ps ; forward fo U ;—in general, not
the gradient of a convex function, though, hence not an opfimal transport in the
sense of Monge and Kantorovich, nor a monotone transport in the sense of
McCann.

Notation:
Ts ;#P = Uy.
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That transport map factorizes into the product
Ts;=F,oTx

where Ty is the linear fransformation x — $~1/2x and F!, the radial
transformation x — Fj (||x||) x/{|x]|].

This suggests an alternative description of X's principal components, formally
bypassing the recourse to the eigenvectors and eigenvalues of X.

Denoting by S;_; the unit hypersphere in R¢ and assuming that f is strictly
positive over the positive real line R4 (this can be relaxed, e.g. to strictly positive
on an interval (0, T") forsome 0 < T' < oo) sO that Ty 5 is invertible, define

2
+Uy, g := argmax,cs, B [HTg?f(gu)H }
and

2
TU; o := arg max E [HTglf(Qu)H ] 1=2,...,d
Sd_19uJ_Uj;e||, J=1,...,2—1 ’

where p is uniform over [0, 1].

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS —p. 23/45



Based on this, define the «th principal halflines of X (of P) as
Ly = {T5(rUgse)lr e R4} and L7 :={Tg(—rUsen)lr € Ry},
The ith principal component of X ~ Px s thenis
P; = £(U;, o1, X) U, I,

the signed projection of X on +U, ¢ or the halflines £
Considering 7 = 1, we have
-1 2 1 _1 2
+U;. ¢ := argmax E [HTE f(gu)H } — arg max E [HT2 (Ff (Q))uH }
ueSy_ ’ ueSy_

2
= arg max E [(Ff_l(g)) ||21/2u||2] = argmax [u'3u| = Py,
uceS _1 uceS, -1

where P is P’s traditional first principal direction (32°s first eigenvector).
The case fori = 2,...,dis entirely similar.

As for the maximum in the definition of £U;. o, it is easily seen fo be of2>\z-,
1=1,...,d, where \; is X’s ith eigenvalue.
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This, which, for an elliptical distribution P, constitutes an alternative definifion of
the classical concept of principal components, involves the transport

Ts;=F oTx
pushing the elliptical P to the uniform U, over the unit ball.

That transport, however,

e makes no sense for a nonelliptical P (no radial distribution available)

e in general, is not the gradient of a convex function® hence is neither optimal
(in the sense of Monge and Kantorovitch) nor monotone (in the sense of
Mc Cann—that is, cyclically monotone).

Yunless S is a multfiple of 14
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The fransport map T's: ¢
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The monotone transport map F 4+
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The fransport map T ;
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The monotone fransport map F 4+
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2.2. Nonelliptical case: a measure-tfransportation-based definition
The idea is very simple: in the sequential choice of principal directions, replace

the non-optimal linear fransport

2_1/2x
|=—12x|

Ts;: x— Ty j(x) = F} (||z:—1/2x||) . Fy (||z:—1/2x||) T (x)

pushing an elliptical P forward to U, with the optimal tfransport F . pushing an
elliptical as well as nonelliptical P forward to Uy.

About pushing P forward to U,;, McCann (1985) tells us the following
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Let X ~ P be Lebesgue-absolutely continuous with (for simplicity of exposition:
this can be relaxed) nonvanishing density.

() there exists a P-almost unique gradient of convex function Fp such thaf

Fpi#P = Uyg.

(i) Moreover, if Var(X) < oo, then Fp minimizes (the expected fransport cosf)

/ Ix — F(x) || 2dP ()
]Rd

among all mappings F from R¢ to S, such that F#P = Uy.
Figalli (2018) moreover showed that

(i) Fp+ is a homeomorphism between S, \ {0} andR? \ {Fp(0)}, hence
admifs an a.s. unique confinuous inverse Q-+ —the a.s. unique gradient of
convex function such that Q1+ #U, ; = P.

Finally,

(iv)Ford =1, Fpy = 2Fp — 1.
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This suggests the following definitions (Hallin, del Barrio, Cuesta-Albertos, and
Matran, Annals of Statistics 2021) for a center-outward distribution function and a
center-outward quantile function in dimension d.

Let X ~ PX be absolutely continuous over R4, Call center-outward distribution
function of P% the a.e. unique gradient of convex function Fp 4 pushing P%
forward to the spherical uniform U4 over S,.

If PX, e.g., has nonvanishing density over a convex support, it follows from Figalli
(2018) that Fpy. is a homeomorphism between S, \ {0} and R4\ F5 1 ({0}).
hence has a confinuous (on S, \ {0}) inverse Qp which is also the confinuous
(on R4\ F;:lt ({0})) gradient of a convex function.

Call Qp+ the centeroutward quantile function of P%.
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For d > 4, moreover, Qp4 ({0}) := ng({o}) could be a compact set with
measure zero, with a disconfinuity at r = 0 of r — Q4 (ru):
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=
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{
/
/

/

™\ HEREEEE

et

... which calls for disenfangling u and —u and adopting a directional (oriented)
definition of principal directions (curves).
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Our definition of nonlinear directional principal curves mimics the previously
given elliptical definition traditional principal components, but

o replaces the “linear” non-optimal transport T's; ; with the optimal one F 4
e selects 2d half-curves instead of d full straight lines

e based on expected curve length

e replaces linear inner products and orthogonal projections with “curvilinear”
ones

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS —p. 35/45



Our definition of nonlinear directional principal curves mimics the previously
given elliptical definition traditional principal components, but

o replaces the “linear” non-optimal transport T's; ; with the optimal one F 4
e selects 2d half-curves instead of d full straight lines

e based on expected curve length

e replaces linear inner products and orthogonal projections with “curvilinear”
ones

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS —p. 35/45



Assume, for simplicity, that P belongs to the family Pi of Lebesgue-absolutely
continuous distributions with support R? and density f such that, for any
compact subset C of R%, there exists constants 0 < bo < Bo < oo such

that b < f(x) < Be forall x € C (these are the assumptions made in Figalli
(2018) to obtain homeomorphisms; they can be relaxed).

Denote by F4+ and Q4 the center-outward distribution and quantile functions
of P, the existence of which does not require any assumption of ellipfical
symmetry nor finite variance:

Fi#P =Uy, Q+#Ug =P.

Define, parallel o what we did before based on Tx; 5, the first nonlinear
directional principal direction of P (of X ~ P) as

U4 1 :=argmax E [L2 (Q+(pu))]
ucSg_1

where

L? (Qu (ru)) := [/O 4 Qu () dtr, re(0,1).

d d d /
ith p ~ dSQu(tu) = (= 2 .
with p ~ Upo,1) and — Q. (tu) (dtQi,l(tu), , dtQi,d(t“))
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Similarly define the ith nonlinear directional principal direction of P (of X ~ P) as

U ; := arg max E [L2 (Q+(pu))] i=2,...,2d

Sd 19L1J_Z/l 1

_|_
orue—Uu, 1\1/11 1

Note that L? (Q4 (ru)) is the squared length of the image (a curve) by Q. of the
interval (0, ru]. The criterion to be maximized is the expected squared curve
length E[L?(Q4 (pu))] instead of the expected squared modulus E[||T§}f(gu) 12].

Associated with the ith principal direction U4. ;, define the «th principal curve
of P (of X ~ P) astheimage L4 ; := {Qi(rUi)w € (0, 1)} of the radius

{rU;|r € (0,1)} by the quantile function Q+—the nonlinear counterpart of the
principal halfline £

Finally, define the ith direcfional non-linear principal component of P (of X ~ P)
as

IFL0l / 4Qu(tUy,;) d F.(X) >
Py, = dt L — (t ) dt i=1,...,2d.
= /0 <||%Qi(tUi,i)|l T |F LX) Z
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The infegrand

LQi(tU+y) d F. (X) >
dt - TN
<|I%Qi(tui,z‘)l| KT <t||Fi(X)I|>

is The modulus of the projections of the derivative wrt t, computed

at tF+ (X)/||F+(X)||. of the image by Q+ of a point in the unif ball moving from
0 fo F4 (X) along the radius pointing fo F4 (X) onto the tangent to the image by
Q-+ of the «th principal directions U+ ;.

That integral, therefore, can be interpreted as the length of a nonlinear
projection of X onto L4 ;.

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS — p. 38/45



2.3. Comparison with Gunsilius and Schennach (JASA 2023)..

Another measure-transportation-based approach has been taken by Gunsilius
and Schennach (JASA 2023).

At population level, it consists of

e considering the optimal tfransport T: R — R4 between X ~ P with density f
andY ~ N(0,1);

e selecting thedirectionsu;, i = 1,...,d as the eigenvectors of the average
log-Jacobian matrix

]::/f(x) In(J(x))dx

of the inverse mapping T~ 1, where J(x) := VT(x), and In(J(x)) is the matrix
logarithm of the positive definite maftrix J(x); these directions are maximizing,
subject to the usual orthogonality constraints, their “confribution”

Hu@- =c++ uq;?._luq;

to the entropy H; of f (cis a constant corresponding fo entropy of Gaussian
distribution).

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS — p. 39/45



A comparison with our approach is not straightforward:
e their reference distribution is the spherical Gaussian, not the spherical uniform;
e they are selecting couples +u of directions, not directions;

e their criterion (for direction u) involves the whole space R?, while we are using
only the Q4 image of u (a curve), yielding the expected spread along that
curve.

Our criterion, which selects principal directions u; on the basis of the expected

length of the sign curve running from Q4 (0™7) to Q4 (X) is more closely in line
with the traditional definition.
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2.4. Empirical version.

Based on empirical transport to a regular grid of the unit ball and discrete
approximations of the integral criterion involved.

(in progress — details skipped)
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3. A real data application: drivers’ profiles

Traffic data collected by a loop detector at a fixed vehicle detector station (VDS
number 1202263) on Line 5 of the California Freeway SR57-N. The observations
span from 9:00 AM on July 9, 2007, to 10:00 PM on July 10, 2007. Originally
recorded at 30-second intervals, the data were aggregated into 5-minute
intervals. Each point in the dataset represents a 5-minute interval and includes
two variables: flow, the number of vehicles passing the detector, and speed, the
average speed (in miles per hour) of those vehicles. This forms a “fundamental
diagram” of fraffic, showing the relafionship between traffic flow and speed.

(1) Einbeck, J.; Evers, L. LPCM: Local Principal Curve Methods. R Package Version
0.47-4. Available online: https://CRAN.R-project.org/package=LPCM (accessed
on 5 March 2024).
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Principal directions for the California traffic flow data:
X1 = flow, Xo= average speed.
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One-dimensional approximations of the California fraffic flow data. Our first two
one-sided principal curves (red), the Gunsilius and Schennach first optimal curve
(blue), the principal curves of Hastie and Stuetzle (magenta) and the neurdl
network principal curve of Scholz et al. (yellow), and the first traditional principal
component (green).
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4. Conclusions

e Traditional principal component concepts are deeply marked by the linearity
and symmetry properties stemming from implicit Gaussian or elliptical
assumptions;

e imposing such linear features is fine under Gaussian or elliptical distributions, but
they are inappropriate under nonelliptical ones, for which they lead to
misleading conclusions;

e OUr measure-transportation-based concepts are replacing the linear features
imposed by the classical definitions with self-generated nonlinearities and
proceed with one-sided selections of principal directions, which accounts for
possible asymmetries;

e getting rid of all linearity features, we are losing an important feature of
classical Principal Components: uncorrelatedness—a feature that makes no
sense, though, in this nonlinear context.

DIRECTIONAL NONLINEAR PRINCIPAL COMPONENTS — p. 45/45



		iny   1. Introduction.
		iny  
		iny  

		iny   
		iny   

		iny  
		iny  
		iny    {�f 2.} Principal components: from bidirectional linear to directional nonlinear
		iny  
		iny  
		iny   A brief history (four chapters) of measure transportation
		iny   
		iny   
		iny   
		iny   
		iny   
		iny   
		iny   Chapter 3. Yann Brenier 
		iny   
		iny   
		iny   
		iny  
		iny  
		iny  
		iny  
		iny  
		iny  
		iny  
		iny  
		iny  
		iny    
		iny  
		iny  
		iny 
		iny  
		iny  
		iny  

		iny   
		iny   
		iny   
		iny   
		iny   
		iny   
		iny   
		iny   
		iny   
		iny   {�f 4.} Conclusions 

