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Prices and returns

» Let P; be the price of a financial asset. The (one-period)
net return is given by

P; — P;_
Rit—1 = %
» The gross return is
P
g t
Rt|t 17 Pt—1‘

» The logarithmic return is

P
rie—1 = log(RY,_4) = log <Pt 1) = log(Pt) — log(Pt-1).



Returns

» Proposition 1. The net return is a linear approximation of
the logarithmic return.

» Proposition 2. The n-period logarithmic return is given by
Injo = log(Pn/Po) = rjo + faj1 + -+ + Fpjn—1-

» Proposition 3. If prices are modeled as a Brownian
motion in continuous time, the marginal distribution of
prices is lognormal and the marginal distribution of
log-returns is normal.



Financial Returns: stylized facts (Cont, 2001)

» Absence of autocorrelations
» Heavy tails

» Gain/loss asymmetry

» Aggregational Gaussianity
» Intermittency

» Volatility clustering

» Conditional heavy tails

» Slow decay of autocorrelation in absolute returns
» Leverage effect

» Volume/volatility correlation
» Asymmetry in time scales



Stochastic processes

» A stochastic process X; is a (finite, countable or
uncountable) family of random variables representing a
statistical phenomenon that evolves in time according to
probabilitic laws.

» The realization of a stochastic process is a path (a
deterministic function of time).

» Given a stochastic process defined on some time horizon
(— Ty, Tp), if we fix some {p € (— Ty, T»), we obtain a
random variable X .

» The mean and variance functions of the process X; are
functions of time given by

u(t) =E(Xy), te(-Ti T2)
var(t) = o?(t) = var(X;), te(-Tq, To).
» Autocovariance function: covariance of X3 and Xi,:

Y(X(t), X(t2)) = E{[Xt, — uu(t)][Xe, — u(82)]}-



Stationary processes

» A stochastic process X; is said to be strictly stationary if
the joint distribution of Xj,, ..., X}, is the same as the joint
distribution of X, -, ..., Xt 4.

» In other words, the joint distribution only depends on the
intervals (lags) between tq,.. ., f, not on their location.

» Taking k = 1, it is easy to see that strict stationarity implies
that the distribution of X; is the same for all ¢, so that
E(X;) = 1 and var(X;) = o2 are constants.

» Taking k = 2, the autocovariance only depends on
r & > — t1, so that the autocovariance function can be
written as (1) = E[(X; — p)(Xt+r — p)].

» Finally, the autocorrelation function is defined as

p(1) = ~(7)/4(0) = 7(7)/0?.



Weak stationarity

» A stochastic process X; is said to be weakly stationary if
E(X:) = u is constant and the autocovariance only
depends on the lag 7 > 0: v(7) = E[(X; — u)(Xexr — )]

» Properties of the autocorrelation function:

1. p(7) = p(=7);
2. [p(r)] < 1;
3. p(7) does not uniquely identify the underlying process.



Basic models

» A purely random (or white noise) process Z; is a
sequence of iid (identically independently distributed)
random variables with E(Z;) = 0 and var(Z;) = o2. Often it
is also assumed Z; ~ N(0, 02).

» By independence:

02 k=0;
k) = cov(Z, Zirk) =3 2 '
1000 = covtzt Zuvk) {o k=+1,42,...

» Suppose Z; is a purely random process with E(Z;) = . and
var(Z;) = o2. A random walk process X; is defined as

Xt = Xt,1 + Zt.
Typically, Xo = 0, so that



Basic models

» Moreover
E(Xt) = tu, var(Xt) = tU%, ”y(T) = 7'0'%.

» Suppose Z; is a white noise process with var(Z;) = a%. Xt
is said to be a Moving Average process of order g (MA(Q))
if

Xt = BoZt + B1ZLi—1 + - + Bgli—q-

» It can be shown that

q
E(X;) =0, var(X;) = o2 Z 32

and
0 k> q;
V(k) = 2T BBk k=1,....q
v(—k) k <O0.



Basic models

» The autocorrelation function is given by

1 k=0;
p(k) = 0 f>q
p(—k) k <O0.

» For the MA(1) process with 5 = 1:

1 k =0;
p(k) =< B1/(1+52) k==1;
0 otherwise.

ST BiBik/ N, 52 k=1,...



Invertibility

» A process X; is said to be invertible if the random
disturbance at time t (the so-called innovation) can be
expressed as a convergent sum of previous and past
values of X;:

o0
Z =) mXej,
j=0

where ) |7j| < oo.
» An MA(1) process X; = Z; + 0Z;_1 is invertible if |0] < 1.
» The Backward shift operator B is defined by

Bth = Xt—jv vjv
so that the MA(q) process can be written as

Xt = (Bo+P1B+ -+ qBY)Zt =
— 9(B)Z.



Invertibility

» It can be shown that the process is invertible if the roots of
the equation

are larger than one in modulus.
» Example. For the MA(1) process, we have

9(3):1+95:o@3=—%,

whose modulus is larger than one if and only if |6 < 1.
» Thus, an MA(1) process is invertible if and only if |§] < 1.



Autoregressive processes

» Let Z; be a purely random process with E(Z;) = 0 and
var(Z;) = a%. X: is an AutoRegressive process of order p

(AR(p)) if
Xt = a1 Xp—1 +apXo+ -+ apXe p+ 2t (1)

» Consider the AR(1) process X; = aX;_1 + Z;. Itis easy to
verify that

Xi=Zi+aZiy+02Z o+,

under the condition —1 < a < 1. Using the backward shift
operator B, equation (1) with p = 1 becomes

(1 - (XB)Xt = Zt.



Autoregressive processes

» Using the fact that 3", |A|" = 1/(1 — |\|]) when || < 1, we
get

S 1-aB

=(1+aB+a?B+...)Z =

= +aZi_1+ aZZt_g + -

Xt

» From this expression we easily get E(X;) = 0,
var(X;) = 02(1 +a? +a* +---). Thus, if |a| < 1,
var(Xy) = o5 = 02/(1 — a?).



Autoregressive processes

» The acv. f. is given by

v(k) = E(XtXik) =

=E <Z O/Zt/) Y dZw || =
i=0 j=0
=05 dat'= fork>0
i=0
OékO'§ .
e ifla| <1
= ako?.

» Moreover, (k) = v(—k), so that, if |a| < 1, the process is
weakly stationary with ac. f. given by p(k) = /¥l
(k=0,1,2,..)).



Autoregressive processes

» In the general (p-th order) case, Equation (1) becomes

(1—aB—- —apB) X, = Z1 &
Xt = (1 —a1B—Z‘I--—apo) -
=1(B)Z,
where
f(By=(1—a1B—--—apBP) ' = (14 1B+ 3B +---).

» However, finding the §;’s is not easy. Thus, to obtain the
ac. f., the usual way consists in assuming stationarity,
multiplying (1) by X;_x, taking expectations and dividing by
a;ﬁ’(. This procedure gives the Yule-Walker equations

p(K) = a1p(k—1)+agp(k—2)+- - -+ app(k—p), k > 0.



Autoregressive processes

» Solution: . .
p(k):A17T|1 |—|-'--+Ap7r| )

where the 7;’s are the roots of yP — aqyP~1 — ... — ap = 0.

» The process is stationary if and only if |7;| < 1 for all / or,
equivalently, if the roots of

$(B) =1—a1X— - —apxP =0

lie outside the unit circle.



ARMA processes

» An ARMA(p, Q) model is a process containing p AR terms
and g MA terms. It is given by

Xt=p+ a1 Xp—q +apXp o+ +apXt_pt+
+ 2t + B14i-1 + B2dt2+ - + Bgli—q- (2)

» Using the Backward shift operator we get:
»(B)X: = 0(B) 4,
where ¢(B) and 6(B) are polynomials of order p and q:

¢(B)y=1—a1B—--—apB®;
9(B) =1+ 1B+ -+ 4B9.



ARMA processes

» An ARMA(p, q) process is stationary if the roots of
¢(B) = 0 lie outside the unit circle.

» An ARMA(p, q) process is invertible if the roots of 6(B) =0
lie outside the unit circle.

» The coefficients of the pure MA representation
Xi = ¢(B)Z; can be obtained as (B) = 6(B)/¢(B).

» The coefficients of the pure AR representation 7(B)X; = Z;
can be obtained as 7(B) = ¢(B)/0(B).

» Thus, n(B)y(B) = 1.



ARIMA processes

v

Problem: many observed time series are non-stationary.

Thus, in order to fit a stationary ARMA(p, g) model, one
has to transform the data.

Most common solution: differencing.
If we write W; = V9X; = (1 — B)?X;, the ARIMA(p, d, q)
process is given by

v

v

v

Wi =aiWiq +aoWia+ -+ apWip+
+Zt+ 121 + B2+ -+ Belt—qs

or

S(B)W, = 0(B)Z: or ¢(B)(1—B)IX; = 0(B)Z.



Fitting ARIMA models

» How do we fit a model to real data? There are two

problems:
1. choosing the model;
2. estimating the parameters.

» As for the first issue, one might compare the sample
autocovariance (autocorrelation) coefficient at lag k to the
theoretical autocovariance (autocorrelation) function of a
specific process.



Sample autocorrelation

» Given nobservations xy, ..., X, from a time series X;, there
are n — 1 pairs of observations separated by one time
interval.

» The sample autocorrelation between X; and X; 1 is
b= I (Xt — X)) (X1 — X(2))
\/2?2_11 (Xt — X1))2 01 (Xe+1 — X(2))2

where X(1) = >/ | Xt/(n— 1) and Xe) = Xi-oXt/(n—1).
Dy is caIIed autocorrelation coeff|0|ent

» It can be approximated as:

X (- W)~ %)
% St (X — X)? 7

=

where X = 31 x;/n.



Sample autocorrelation

» Most common approximation:

_ X (= X) (X1 — X)
>y (xt — %) .

» Autocorrelation coefficient at lag k:

>

A ?=_1K(Xt — X)(Xt1k — X)
>tg (Xt — X)?
» Autocovariance at lag k:
nfk
)(Xt+k — X).
It follows that
" Ck
Pk = —

_CO_



Sample autocorrelation and correlogram

» Notice that

is just the variance of x;.

» The correlogram is a scatterplot of k and rx for some
values of k (typically much smaller than n).

» Guidelines for interpretation:
» for stationary series, p1 large and one or two further “large’
(but smaller than p4) values;
» alternating series: alternating correlogram;
» for series with a trend: px > 0 for many values of k;
» seasonal data: correlogram exhibit oscillations at the same
frequency.



Fitting ARIMA models

» It can be shown that, if xq, ..., X, are iid observations from
a distribution with arbitrary mean,

a 11
pk~N{|—=,—=].
» In general:

» if the ac.f. cuts off at lag g, an MA(q) process may be
appropriate;

» if the ac.f. decreases exponentially, an AR(1) process may
be appropriate;

» other cases are more difficult to deal with.

» Estimating the mean is misleading if there are systematic
components; even when there are no systematic
components, the sample mean is often less informative
than in classical statistics.



Fitting AR models

» Suppose the model has order p:
Xi—p = a1 (X1 —p)+ao(Xio—p)+- - ‘—i-ap(Xt_p —p)+2Z;.

» Given n observations we can estimate the parameters by
least squares by minimizing

n
S= D It—p—or(x1— )~ —aplx—p— ).
t=p+1
» Inthe AR(1) case the estimators are:
fi=X;

ay = 1 (Xt = X) (X1 — X)
?:_11 (Xt — X)?




Fitting AR models

» If we approximate the denominator of (3) with
Z?:1 (Xf - )_()2 we have 6{1 =n.
» Asymptotically,

. 1-a2
r =—".
va (041) n
» For the AR(p) model we can either fit a regression model
to
Xt—X = aq(Xp—1 — X) +az(Xt—2 — X) +- - -+ ap(Xt—p — X) + Z;

and use standard linear regression techniques, or insert
the sample autocorrelations in the Yule-Walker equations
and solve for (&1, ..., ap).



Fitting AR models

» Possible tools for determining the order p of the process:

» use the sample ac.f;

» use the partial ac.f. w(k), defined as follows: when fitting an
AR(p) process, the last coefficient o, = w(p) measures the
excess correlation not accounted for by the first p — 1
parameters, namely by an AR(p — 1) model. ap = 7(p) is
the p-th partial autocorrelation coefficient. The partial
autocorrelation function is the plot of p against a,. It can be
shown that the partial ac.f. of an AR(p) process “cuts off” at
lag p; moreover, it can be shown that =(1) = p(1).

» compute the residual sum of squares and plot it against p.



Fitting MA models

» In order to fit an MA model, as in the AR case, we have to:
» find the order of the process;
» estimate the parameters.

» As for the second problem, it is more difficult than the
corresponding problem in the AR case, and numerical
methods are needed.

» On the contrary, the first problem is easier, as it can usually
be based on the sample ac.f.,, taking g equal to the largest
value of k such that p is significantly different from zero.



Forecasting ARIMA models

» Having identified and estimated an appropriate ARIMA
model, it is possible to use the ARIMA model equation
directly. More precisely the forecast of X, is obtained by
replacing:

» future values of Z by zero;

» future values of X by their conditional expectation;

» present and past values of X and Z by their observed
values.

» A second strategy consists in using the 1 weights of the
infinite MA representation, given by

XNih = ZNyh+ V1dNrhg + o

The forecast is then X, = > 720 UhiZN-j.



Forecasting ARIMA models

» The variance of the h-steps ahead forecast error is then

var(Xnin — Xnin) =
=var(Znih + V12nih—1 + -+ Yn—1Zng1) =
=(1+0f 4+ y)o% ()

» A third strategy consists in using the = weights. We have
Xnih = T1XNih—1 + T2 Xnph2 + o+ ThXN + o+ Dy
so that

Xnih = 1 XN h-1+ T2 Xnsho+ TR XN+ TR Xno1 ++ -



Prediction intervals

» Most P.l.s used in practice are of the form
Xnoh £ 2o 2 /var(ensn),

where ey p = Xnin — )A(N+h is the forecast error at time N
and z,, is the /2 quantile of the standard normal
distribution.

» It is implicitly assumed that f(N+h is an unbiased estimator
of Xn.n and that ey 5 is normally distributed.

» In the Box-Jenkins approach, var(en.) is given by (4), so
that the P.I. is equal to

Xnin+ Za/Z\/(1 +oF 4+ YR )0,



Models of financial returns

v

Basic model:
= put+oe, t=1,2.... ¢ ~iid WN(O,1), (5)

where WN stands for white noise.

If ¢ is an ARMA model and o; = o Vi, then r; is an ARMA
model. Not realistic. . .

...because the variance is usually NOT constant.
Hence: need to model a time-varying variance o2.

Moreover: the mean is typically small and almost constant,
so that setting u; = p Vt makes little difference.

Conclusion: modeling the variance is the real challenge.



GARCH models

» Let’s go back to (5), assuming that ;s = p and define r] as
the time-t residual return, i.e. r{ = r; — p. In the following
we will model r{ but, with a slight abuse of notation, we will

call it ry.

» ARIMA models assume that the variance is constant. If it is
not, we need to model a time-varying variance.

» A GARCH(m, s) model for the residual returns is:

rn=o, t=12,..., e ~iid WN(O,1),
m S

O't2 =ag + Za;ft{i + Z'B"U?f/’
i=1 j=1

with ag > 0, a; > 0, 5 > 0, 7™ o, 1 ;) < 1.



The ARCH LM test

» A formal way of checking whether an ARCH model should
be used is Engle’s Lagrange multiplier (LM) test, which is
based on the the following steps:

1. Estimate the best-fitting AR(q) model and compute the

residuals é;;
2. fit the regression é2 = 6 + > 7 ; &ié% ;
3. under Hy : ;=0 (i=1,...,Qq), the random variable

(T — q)R? is distributed as x5, where T is the number of
observations.
» Another possibility is the usual Ljung-Box test applied to
the standardized squared residuals.



The GARCH(1, 1) model

» Inthis case, 02 = ag + a1r? | + B102_ ;. Hence:

» Alarge r? , or o2 , tends to give a large o?;
» The unconditional variance is

Qo .
T—ag =B’

» 1f 1 —2a2 — (a1 + B1)2 > 0, the kurtosis is given by

3 — (a1 + £1)?]
A — (o1 + B1)? — 202 >3

var(ry) =

» Any GARCH process has unconditional mean equal to 0
and is serially uncorrelated. Hence, if the variance exists, it
is weakly stationary;

» Any GARCH process can be written as an infinite order
ARCH process.



GARCH prediction

» It can be shown that the h-step ahead forecast of a
GARCH(1,1) process is given by

Ul?—i-h =aop + (a1 + B4 )O-t2+h—1a t>1,
which can be rewritten as

2 a1 — (o + B1)" ]

h—1 2
t+h p—) (a1 +B1)" ot
so that . oo
2 —00
Ot+h ,

T—as =B



Extensions of the basic GARCH model: 1. IGARCH

> Let
re=owr, of =ag+Brorq+ (1= B)rEy,
with 8y € (0,1). This is called an Integrated GARCH
(IGARCH) model.

» |t is nonstationary with infinite variance.

» The special case obtained when ag = 0 is the
Exponentially weighted moving average (EWMA) model,
popularized by JP Morgan’s RiskMetrics™ approach to
market risk measurement.

» Using (6) with a1 + 81 = 1, the h-step ahead forecast is

ot p=0f 1+ (h—1)ag, t>1,



Extensions of the basic GARCH model: 2. GARCH-M

> Let
2 2 2 2
It = pu+ Coy + ot€r, Ot :Oéo+0z10t_1+,31ft_1,

with aiq, 81 € (0,1), oy + 1 < 1. This is called a
GARCH-in-mean (GARCH-M) model.

» c can be interpreted as a risk premium parameter.
» The process r; is serially correlated.



Extensions of the basic GARCH model: 3. EGARCH

> Let
g(et) = Oet +llet| — E(let])], 0,7 €R.

» An EGARCH(m, s) model is given by

14 1B+ + BsB°
It = oet, |Og(02) — 3 _C/f:B_ _fnqumg(€t_1),

» g(e;) is asymmetric, so that the model gives, in general,
different weight to positive and negative shocks.



Evaluation of models

» As the variance of an asset return is not directly
observable, comparing the forecasting performance of
different volatility models is difficult.

» It is preferable to use residual analysis or information
criteria.

» Akaike’s Information Criterion (AIC):

Aic — —2loe(b) | 2m
n n

» Bayesian Information Criterion (BIC):

BIC — —2log(L) n mlog(n)7
n n

where m is the number of parameters and log(L) is the
maximized log-likelihood.



Value-at-Risk

» Suppose that at time t we are interested in the risk of a
financial position for the next h periods. Let AV(h) be the
change in value of the assets in the financial position from
ttot+h.

» Let Fu(x) be the cdf of AV(h). The p-level (0 < p < 1)
Value-at-Risk (VaR) over the time horizon h is defined as
follows:

VaR, : P(AV(h) < VaR,) = Fp(VaR,) = p.



RiskMetrics VaR

» Let F; be the information available at time t. Let
1| Fe—q ~ N(ut, 02).

» Letus =0,02 =ao? ; + (1 —a)r2 ;.

» This is an IGARCH(1,1) model without drift.

» Let ni[k] = ripq + -+ + riyk—1 + rsk- It can be shown that
I’t[k]‘./—'} ~ N(O, kO’?_H )
» Conditional k-period VaR at level p:

VaR, (k) = amount of position x vk x z x o4 1.

» RiskMetrics sets o = 0.94.



One-period GARCH(m, s) VaR

» Let the model be:

p g
n=do+ Y difii+ Yy Oarj,
i=1 j=1

ag = otet,
m S
2 2 2
Oy = O + Zoz,'l‘t_,- + Zﬁiat—j'
i=1 j=1

» One-step ahead forecasts:
p q
Pt = o+ D Giltri—i+ Y G-,
i=1 j=1

m S
A2 2 2
Ot = Qo + E Qilfyq_i+ E Bioti1j-
i—1 j=1



One-period VaR

> If et ~ N(0, 1), ry1|Ft ~ N(Fry1,62 ;) and the p-level VaR
is

» If ¢ ~ t*(v) (the standardized ¢ distribution with » degrees
of freedom), ry 1| Ft ~ N(?,+1,6t2+1) and the p-level VaR is

VaRp = Ti1 + 15,6141,

where t; , is the p-quantile of the standardized ¢
distribution with v degrees of freedom.

» Notethatt), =t,,//v/(v — 2), provided that v > 2.
p7 p7



Backtesting

» Statistical procedure where actual profits and losses are
systematically compared to corresponding VaR estimates.

» For example, if the VaR level is 95%, we expect, on
average, an exception in every 20 days.

» Tests of unconditional coverage: check whether the
frequency of exceptions over some specified time interval
is in line with the VaR level.

» Tests of conditional coverage: check whether the
frequency of exceptions over some specified time interval
is in line with the VaR level and exceptions are evenly
spread over time.

» See Jorion (2006) for details.
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