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Prices and returns

I Let Pt be the price of a financial asset. The (one-period)
net return is given by

Rt |t−1 =
Pt − Pt−1

Pt−1
.

I The gross return is

Rg
t |t−1 =

Pt

Pt−1
.

I The logarithmic return is

rt |t−1 = log(Rg
t |t−1) = log

(
Pt

Pt−1

)
= log(Pt )− log(Pt−1).



Returns

I Proposition 1. The net return is a linear approximation of
the logarithmic return.

I Proposition 2. The n-period logarithmic return is given by

rn|0 = log(Pn/P0) = r1|0 + r2|1 + · · ·+ rn|n−1.

I Proposition 3. If prices are modeled as a Brownian
motion in continuous time, the marginal distribution of
prices is lognormal and the marginal distribution of
log-returns is normal.



Financial Returns: stylized facts (Cont, 2001)

I Absence of autocorrelations
I Heavy tails
I Gain/loss asymmetry
I Aggregational Gaussianity
I Intermittency
I Volatility clustering
I Conditional heavy tails
I Slow decay of autocorrelation in absolute returns
I Leverage effect
I Volume/volatility correlation
I Asymmetry in time scales



Stochastic processes
I A stochastic process Xt is a (finite, countable or

uncountable) family of random variables representing a
statistical phenomenon that evolves in time according to
probabilitic laws.

I The realization of a stochastic process is a path (a
deterministic function of time).

I Given a stochastic process defined on some time horizon
(−T1,T2), if we fix some t0 ∈ (−T1,T2), we obtain a
random variable Xt0 .

I The mean and variance functions of the process Xt are
functions of time given by

µ(t) = E(Xt ), t ∈ (−T1,T2)

var(t) = σ2(t) = var(Xt ), t ∈ (−T1,T2).

I Autocovariance function: covariance of Xt1 and Xt2 :

γ(X (t1),X (t2)) = E{[Xt1 − µ(t1)][Xt2 − µ(t2)]}.



Stationary processes

I A stochastic process Xt is said to be strictly stationary if
the joint distribution of Xt1 , . . . ,Xtk is the same as the joint
distribution of Xt1+τ , . . . ,Xtk+τ .

I In other words, the joint distribution only depends on the
intervals (lags) between t1, . . . , tk , not on their location.

I Taking k = 1, it is easy to see that strict stationarity implies
that the distribution of Xt is the same for all t , so that
E(Xt ) = µ and var(Xt ) = σ2 are constants.

I Taking k = 2, the autocovariance only depends on
τ

def
= t2 − t1, so that the autocovariance function can be

written as γ(τ) = E[(Xt − µ)(Xt+τ − µ)].
I Finally, the autocorrelation function is defined as
ρ(τ) = γ(τ)/γ(0) = γ(τ)/σ2.



Weak stationarity

I A stochastic process Xt is said to be weakly stationary if
E(Xt ) = µ is constant and the autocovariance only
depends on the lag τ ≥ 0: γ(τ) = E[(Xt − µ)(Xt+τ − µ)].

I Properties of the autocorrelation function:
1. ρ(τ) = ρ(−τ);
2. |ρ(τ)| ≤ 1;
3. ρ(τ) does not uniquely identify the underlying process.



Basic models
I A purely random (or white noise) process Zt is a

sequence of iid (identically independently distributed)
random variables with E(Zt ) = 0 and var(Zt ) = σ2. Often it
is also assumed Zt ∼ N(0, σ2

Z ).
I By independence:

γ(k) = cov(Zt ,Zt+k ) =

{
σ2

Z k = 0;

0 k = ±1,±2, . . .

I Suppose Zt is a purely random process with E(Zt ) = µ and
var(Zt ) = σ2. A random walk process Xt is defined as

Xt = Xt−1 + Zt .

Typically, X0 = 0, so that

Xt =
t∑

i=1

Zi .



Basic models
I Moreover

E(Xt ) = tµ, var(Xt ) = tσ2
Z , γ(τ) = τσ2

Z .

I Suppose Zt is a white noise process with var(Zt ) = σ2
Z . Xt

is said to be a Moving Average process of order q (MA(q))
if

Xt = β0Zt + β1Zt−1 + · · ·+ βqZt−q.

I It can be shown that

E(Xt ) = 0, var(Xt ) = σ2
Z

q∑
i=0

β2
i

and

γ(k) =


0 k > q;

σ2
Z
∑q−k

i=0 βiβi+k k = 1, . . . ,q;

γ(−k) k < 0.



Basic models

I The autocorrelation function is given by

ρ(k) =


1 k = 0;

0 k > q;∑q−k
i=0 βiβi+k/

∑q
i=0 β

2
i k = 1, . . . ,q;

ρ(−k) k < 0.

I For the MA(1) process with β0 = 1:

ρ(k) =


1 k = 0;

β1/(1 + β2
1) k = ±1;

0 otherwise.



Invertibility
I A process Xt is said to be invertible if the random

disturbance at time t (the so-called innovation) can be
expressed as a convergent sum of previous and past
values of Xt :

Zt =
∞∑

j=0

πjXt−j ,

where
∑
|πj | <∞.

I An MA(1) process Xt = Zt + θZt−1 is invertible if |θ| < 1.
I The Backward shift operator B is defined by

BjXt = Xt−j , ∀j ,

so that the MA(q) process can be written as

Xt = (β0 + β1B + · · ·+ βqBq)Zt =

= θ(B)Zt .



Invertibility

I It can be shown that the process is invertible if the roots of
the equation

θ(B) = β0 + β1B + · · ·+ βqBq = 0

are larger than one in modulus.
I Example. For the MA(1) process, we have

θ(B) = 1 + θB = 0⇔ B = −1
θ
,

whose modulus is larger than one if and only if |θ| < 1.
I Thus, an MA(1) process is invertible if and only if |θ| < 1.



Autoregressive processes

I Let Zt be a purely random process with E(Zt ) = 0 and
var(Zt ) = σ2

Z . Xt is an AutoRegressive process of order p
(AR(p)) if

Xt = α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p + Zt . (1)

I Consider the AR(1) process Xt = αXt−1 + Zt . It is easy to
verify that

Xt = Zt + αZt−1 + α2Zt−2 + · · · ,

under the condition −1 < α < 1. Using the backward shift
operator B, equation (1) with p = 1 becomes

(1− αB)Xt = Zt .



Autoregressive processes

I Using the fact that
∑∞

i=0 |λ|i = 1/(1− |λ|) when |λ| < 1, we
get

Xt =
Zt

1− αB
=

= (1 + αB + α2B2 + · · · )Zt =

= Zt + αZt−1 + α2Zt−2 + · · ·

I From this expression we easily get E(Xt ) = 0,
var(Xt ) = σ2

Z (1 + α2 + α4 + · · · ). Thus, if |α| < 1,
var(Xt ) = σ2

X = σ2
Z/(1− α2).



Autoregressive processes

I The acv. f. is given by

γ(k) = E(XtXt+k ) =

= E

( ∞∑
i=0

αiZt−i

) ∞∑
j=0

αjZt+k−j

 =

= σ2
Z

∞∑
i=0

αiαk+i = for k ≥ 0

=
αkσ2

Z
1− α2 = if|α| < 1

= αkσ2
X .

I Moreover, γ(k) = γ(−k), so that, if |α| < 1, the process is
weakly stationary with ac. f. given by ρ(k) = α|k |

(k = 0,1,2, . . .).



Autoregressive processes
I In the general (p-th order) case, Equation (1) becomes

(1− α1B − · · · − αpBp)Xt = Zt ⇔

Xt =
Zt

(1− α1B − · · · − αpBp)
=

= f (B)Zt ,

where

f (B) = (1− α1B − · · · − αpBp)−1 = (1 + β1B + β2B2 + · · · ).

I However, finding the βi ’s is not easy. Thus, to obtain the
ac. f., the usual way consists in assuming stationarity,
multiplying (1) by Xt−k , taking expectations and dividing by
σ2

X . This procedure gives the Yule-Walker equations

ρ(k) = α1ρ(k−1)+α2ρ(k−2)+ · · ·+αpρ(k−p), k > 0.



Autoregressive processes

I Solution:
ρ(k) = A1π

|k |
1 + · · ·+ Apπ

|k |
p ,

where the πi ’s are the roots of yp − α1yp−1 − · · · − αp = 0.
I The process is stationary if and only if |πi | < 1 for all i or,

equivalently, if the roots of

φ(B) = 1− α1x − · · · − αpxp = 0

lie outside the unit circle.



ARMA processes

I An ARMA(p,q) model is a process containing p AR terms
and q MA terms. It is given by

Xt = µ+ α1Xt−1 + α2Xt−2 + · · ·+ αpXt−p+

+ Zt + β1Zt−1 + β2Zt−2 + · · ·+ βqZt−q. (2)

I Using the Backward shift operator we get:

φ(B)Xt = θ(B)Zt ,

where φ(B) and θ(B) are polynomials of order p and q:

φ(B) = 1− α1B − · · · − αpBp;

θ(B) = 1 + β1B + · · ·+ βqBq.



ARMA processes

I An ARMA(p,q) process is stationary if the roots of
φ(B) = 0 lie outside the unit circle.

I An ARMA(p,q) process is invertible if the roots of θ(B) = 0
lie outside the unit circle.

I The coefficients of the pure MA representation
Xt = ψ(B)Zt can be obtained as ψ(B) = θ(B)/φ(B).

I The coefficients of the pure AR representation π(B)Xt = Zt
can be obtained as π(B) = φ(B)/θ(B).

I Thus, π(B)ψ(B) = 1.



ARIMA processes

I Problem: many observed time series are non-stationary.
I Thus, in order to fit a stationary ARMA(p,q) model, one

has to transform the data.
I Most common solution: differencing.
I If we write Wt = ∇dXt = (1− B)dXt , the ARIMA(p,d ,q)

process is given by

Wt = α1Wt−1 + α2Wt−2 + · · ·+ αpWt−p+

+ Zt + β1Zt−1 + β2Zt−2 + · · ·+ βqZt−q,

or

φ(B)Wt = θ(B)Zt or φ(B)(1− B)dXt = θ(B)Zt .



Fitting ARIMA models

I How do we fit a model to real data? There are two
problems:

1. choosing the model;
2. estimating the parameters.

I As for the first issue, one might compare the sample
autocovariance (autocorrelation) coefficient at lag k to the
theoretical autocovariance (autocorrelation) function of a
specific process.



Sample autocorrelation
I Given n observations x1, . . . , xn from a time series Xt , there

are n − 1 pairs of observations separated by one time
interval.

I The sample autocorrelation between Xt and Xt+1 is

ρ̂1 =

∑n−1
t=1 (xt − x̄(1))(xt+1 − x̄(2))√∑n−1

t=1 (xt − x̄(1))2
∑n−1

t=1 (xt+1 − x̄(2))2
,

where x̄(1) =
∑n−1

t=1 xt/(n − 1) and x̄(2) =
∑n

t=2 xt/(n − 1).
ρ̂1 is called autocorrelation coefficient.

I It can be approximated as:

ρ̂1 =

∑n−1
t=1 (xt − x̄)(xt+1 − x̄)
n−1

n
∑n

t=1(xt − x̄)2
,

where x̄ =
∑n

t=1 xt/n.



Sample autocorrelation
I Most common approximation:

ρ̂1 =

∑n−1
t=1 (xt − x̄)(xt+1 − x̄)∑n

t=1(xt − x̄)2 .

I Autocorrelation coefficient at lag k :

ρ̂k =

∑n−k
t=1 (xt − x̄)(xt+k − x̄)∑n

t=1(xt − x̄)2 .

I Autocovariance at lag k :

ck =
1

n − k

n−k∑
t=1

(xt − x̄)(xt+k − x̄).

It follows that
ρ̂k =

ck

c0
.



Sample autocorrelation and correlogram

I Notice that

c0 =
1
n

n∑
t=1

(xt − x̄)2

is just the variance of xt .
I The correlogram is a scatterplot of k and rk for some

values of k (typically much smaller than n).
I Guidelines for interpretation:

I for stationary series, ρ̂1 large and one or two further “large”
(but smaller than ρ̂1) values;

I alternating series: alternating correlogram;
I for series with a trend: ρ̂k > 0 for many values of k ;
I seasonal data: correlogram exhibit oscillations at the same

frequency.



Fitting ARIMA models

I It can be shown that, if x1, . . . , xn are iid observations from
a distribution with arbitrary mean,

ρ̂k
a∼ N

(
−1

n
,

1
n

)
.

I In general:
I if the ac.f. cuts off at lag q, an MA(q) process may be

appropriate;
I if the ac.f. decreases exponentially, an AR(1) process may

be appropriate;
I other cases are more difficult to deal with.

I Estimating the mean is misleading if there are systematic
components; even when there are no systematic
components, the sample mean is often less informative
than in classical statistics.



Fitting AR models

I Suppose the model has order p:

Xt−µ = α1(Xt−1−µ)+α2(Xt−2−µ)+· · ·+αp(Xt−p−µ)+Zt .

I Given n observations we can estimate the parameters by
least squares by minimizing

S =
n∑

t=p+1

[xt − µ− α1(xt−1 − µ)− · · · − αp(xt−p − µ)]2.

I In the AR(1) case the estimators are:

µ̂ = x̄ ;

α̂1 =

∑n−1
t=1 (xt − x̄)(xt+1 − x̄)∑n−1

t=1 (xt − x̄)2
. (3)



Fitting AR models

I If we approximate the denominator of (3) with∑n
t=1(xt − x̄)2 we have α̂1 = r1.

I Asymptotically,

var(α̂1) =
1− α2

1
n

.

I For the AR(p) model we can either fit a regression model
to

xt − x̄ = α1(xt−1− x̄) +α2(xt−2− x̄) + · · ·+αp(xt−p− x̄) + Zt

and use standard linear regression techniques, or insert
the sample autocorrelations in the Yule-Walker equations
and solve for (α̂1, . . . , α̂p).



Fitting AR models

I Possible tools for determining the order p of the process:
I use the sample ac.f.;
I use the partial ac.f. π(k), defined as follows: when fitting an

AR(p) process, the last coefficient αp = π(p) measures the
excess correlation not accounted for by the first p − 1
parameters, namely by an AR(p − 1) model. αp = π(p) is
the p-th partial autocorrelation coefficient. The partial
autocorrelation function is the plot of p against αp. It can be
shown that the partial ac.f. of an AR(p) process “cuts off” at
lag p; moreover, it can be shown that π(1) = ρ(1).

I compute the residual sum of squares and plot it against p.



Fitting MA models

I In order to fit an MA model, as in the AR case, we have to:
I find the order of the process;
I estimate the parameters.

I As for the second problem, it is more difficult than the
corresponding problem in the AR case, and numerical
methods are needed.

I On the contrary, the first problem is easier, as it can usually
be based on the sample ac.f., taking q equal to the largest
value of k such that ρ̂k is significantly different from zero.



Forecasting ARIMA models

I Having identified and estimated an appropriate ARIMA
model, it is possible to use the ARIMA model equation
directly. More precisely the forecast of Xn+h is obtained by
replacing:

I future values of Z by zero;
I future values of X by their conditional expectation;
I present and past values of X and Z by their observed

values.
I A second strategy consists in using the ψ weights of the

infinite MA representation, given by

XN+h = ZN+h + ψ1ZN+h−1 + · · ·

The forecast is then X̂n+h =
∑∞

j=0 ψh+jzN−j .



Forecasting ARIMA models

I The variance of the h-steps ahead forecast error is then

var(XN+h − X̂N+h) =

= var(ZN+h + ψ1ZN+h−1 + · · ·+ ψh−1ZN+1) =

= (1 + ψ2
1 + · · ·+ ψ2

h−1)σ2
Z . (4)

I A third strategy consists in using the π weights. We have

XN+h = π1XN+h−1 + π2XN+h−2 + · · ·+ πhXN + · · ·+ ZN+h,

so that

X̂N+h = π1X̂N+h−1+π2X̂N+h−2+· · ·+πhXN +πh+1XN−1+· · ·



Prediction intervals

I Most P.I.s used in practice are of the form

X̂N+h ± zα/2
√

var(eN+h),

where eN+h = XN+h − X̂N+h is the forecast error at time N
and zα/2 is the α/2 quantile of the standard normal
distribution.

I It is implicitly assumed that X̂N+h is an unbiased estimator
of XN+h and that eN+h is normally distributed.

I In the Box-Jenkins approach, var(eN+h) is given by (4), so
that the P.I. is equal to

X̂N+h ± zα/2

√
(1 + ψ2

1 + · · ·+ ψ2
h−1)σ2

Z ,



Models of financial returns

I Basic model:

rt = µt + σtεt , t = 1,2, . . . , εt ∼ iid WN(0,1), (5)

where WN stands for white noise.
I If µt is an ARMA model and σt = σ ∀t , then rt is an ARMA

model. Not realistic. . .
I . . . because the variance is usually NOT constant.
I Hence: need to model a time-varying variance σ2

t .
I Moreover: the mean is typically small and almost constant,

so that setting µt = µ ∀t makes little difference.
I Conclusion: modeling the variance is the real challenge.



GARCH models

I Let’s go back to (5), assuming that µt = µ and define r ′t as
the time-t residual return, i.e. r ′t = rt − µ. In the following
we will model r ′t but, with a slight abuse of notation, we will
call it rt .

I ARIMA models assume that the variance is constant. If it is
not, we need to model a time-varying variance.

I A GARCH(m, s) model for the residual returns is:

rt = σtεt , t = 1,2, . . . , εt ∼ iid WN(0,1),

σ2
t = α0 +

m∑
i=1

αi r2
t−i +

s∑
j=1

βiσ
2
t−j ,

with α0 > 0, αi ≥ 0, βj ≥ 0,
∑max{m,s}

i=1 (αi + βi) < 1.



The ARCH LM test

I A formal way of checking whether an ARCH model should
be used is Engle’s Lagrange multiplier (LM) test, which is
based on the the following steps:

1. Estimate the best-fitting AR(q) model and compute the
residuals ε̂t ;

2. fit the regression ε̂2t = α̂0 +
∑q

i=1 α̂i ε̂
2
t−i ;

3. under H0 : αi = 0 (i = 1, . . . ,q), the random variable
(T − q)R2 is distributed as χ2

q , where T is the number of
observations.

I Another possibility is the usual Ljung-Box test applied to
the standardized squared residuals.



The GARCH(1,1) model

I In this case, σ2
t = α0 + α1r2

t−1 + β1σ
2
t−1. Hence:

I A large r2
t−1 or σ2

t−1 tends to give a large σ2
t ;

I The unconditional variance is

var(rt ) =
α0

1− α1 − β1
;

I If 1− 2α2
1 − (α1 + β1)2 > 0, the kurtosis is given by

κ =
3[1− (α1 + β1)2]

1− (α1 + β1)2 − 2α2
1
> 3.

I Any GARCH process has unconditional mean equal to 0
and is serially uncorrelated. Hence, if the variance exists, it
is weakly stationary;

I Any GARCH process can be written as an infinite order
ARCH process.



GARCH prediction

I It can be shown that the h-step ahead forecast of a
GARCH(1,1) process is given by

σ2
t+h = α0 + (α1 + β1)σ2

t+h−1, t > 1, (6)

which can be rewritten as

σ2
t+h =

α0[1− (α1 + β1)h−1]

1− α1 − β1
+ (α1 + β1)h−1σ2

t+1,

so that
σ2

t+h
h→∞−→ α0

1− α1 − β1
.



Extensions of the basic GARCH model: 1. IGARCH

I Let

rt = σtεt , σ2
t = α0 + β1σ

2
t−1 + (1− β1)r2

t−1,

with β1 ∈ (0,1). This is called an Integrated GARCH
(IGARCH) model.

I It is nonstationary with infinite variance.
I The special case obtained when α0 = 0 is the

Exponentially weighted moving average (EWMA) model,
popularized by JP Morgan’s RiskMetricsTM approach to
market risk measurement.

I Using (6) with α1 + β1 = 1, the h-step ahead forecast is

σ2
t+h = σ2

t+1 + (h − 1)α0, t > 1,



Extensions of the basic GARCH model: 2. GARCH-M

I Let

rt = µ+ cσ2
t + σtεt , σ2

t = α0 + α1σ
2
t−1 + β1r2

t−1,

with α1, β1 ∈ (0,1), α1 + β1 < 1. This is called a
GARCH-in-mean (GARCH-M) model.

I c can be interpreted as a risk premium parameter.
I The process rt is serially correlated.



Extensions of the basic GARCH model: 3. EGARCH

I Let
g(εt ) = θεt + γ[|εt | − E(|εt |)], θ, γ ∈ R.

I An EGARCH(m, s) model is given by

rt = σtεt , log(σ2
t ) =

1 + β1B + · · ·+ βsBs

1− α1B − · · · − αmBm g(εt−1),

I g(εt ) is asymmetric, so that the model gives, in general,
different weight to positive and negative shocks.



Evaluation of models

I As the variance of an asset return is not directly
observable, comparing the forecasting performance of
different volatility models is difficult.

I It is preferable to use residual analysis or information
criteria.

I Akaike’s Information Criterion (AIC):

AIC =
−2 log(L)

n
+

2m
n
,

I Bayesian Information Criterion (BIC):

BIC =
−2 log(L)

n
+

m log(n)

n
,

where m is the number of parameters and log(L) is the
maximized log-likelihood.



Value-at-Risk

I Suppose that at time t we are interested in the risk of a
financial position for the next h periods. Let ∆V (h) be the
change in value of the assets in the financial position from
t to t + h.

I Let Fh(x) be the cdf of ∆V (h). The p-level (0 < p < 1)
Value-at-Risk (VaR) over the time horizon h is defined as
follows:

VaRp : P(∆V (h) ≤ VaRp) = Fh(VaRp) = p.



RiskMetrics VaR

I Let Ft be the information available at time t . Let
rt |Ft−1 ∼ N(µt , σ

2
t ).

I Let µt = 0, σ2
t = ασ2

t−1 + (1− α)r2
t−1.

I This is an IGARCH(1,1) model without drift.
I Let rt [k ] = rt+1 + · · ·+ rt+k−1 + rt+k . It can be shown that

rt [k ]|Ft ∼ N(0, kσ2
t+1).

I Conditional k -period VaR at level p:

VaRp(k) = amount of position×
√

k × zp × σt+1.

I RiskMetrics sets α = 0.94.



One-period GARCH(m, s) VaR
I Let the model be:

rt = φ0 +

p∑
i=1

φi rt−i +

q∑
j=1

θjat−j ,

at = σtεt ,

σ2
t = α0 +

m∑
i=1

αi r2
t−i +

s∑
j=1

βiσ
2
t−j .

I One-step ahead forecasts:

r̂t+1 = φ0 +

p∑
i=1

φi rt+1−i +

q∑
j=1

θjat+1−j ,

σ̂2
t+1 = α0 +

m∑
i=1

αi r2
t+1−i +

s∑
j=1

βiσ
2
t+1−j .



One-period VaR

I If εt ∼ N(0,1), rt+1|Ft ∼ N(r̂t+1, σ̂
2
t+1) and the p-level VaR

is
VaRp = r̂t+1 + zpσ̂t+1.

I If εt ∼ t∗(ν) (the standardized t distribution with ν degrees
of freedom), rt+1|Ft ∼ N(r̂t+1, σ̂

2
t+1) and the p-level VaR is

VaRp = r̂t+1 + t∗p,ν σ̂t+1,

where t∗p,ν is the p-quantile of the standardized t
distribution with ν degrees of freedom.

I Note that t∗p,ν = tp,ν/
√
ν/(ν − 2), provided that ν > 2.



Backtesting

I Statistical procedure where actual profits and losses are
systematically compared to corresponding VaR estimates.

I For example, if the VaR level is 95%, we expect, on
average, an exception in every 20 days.

I Tests of unconditional coverage: check whether the
frequency of exceptions over some specified time interval
is in line with the VaR level.

I Tests of conditional coverage: check whether the
frequency of exceptions over some specified time interval
is in line with the VaR level and exceptions are evenly
spread over time.

I See Jorion (2006) for details.
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