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The aim is to provide an approach through the Mean Field Games
theory to a classical problem in unsupervised Machine Learning, the
Cluster Analysis

(a) Supervised versus Unsupervised

In Supervised ML, we have prior knowledge of the output values
for a set of data points. The goal is to learn a function that best
approximates the relationship between input and output
observable in the data.
In Unsupervised ML, we do not have labelled outputs and the aim
is to infer a specific structure within a set of data points. 2 / 58



Cluster Analysis

Clustering is the process of grouping a set of objects into classes of
similar objects.
A cluster is a collection of data objects that are similar to one another
within the same cluster and are dissimilar to the objects in other
clusters.

(b) (c)
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Cluster analysis is used for
Extracting set of patterns from the data set.
Pre-process rough sample data for supervised ML

Some typical applications are
Image Processing and Pattern Recognition

(d) color quantization (e) face recognition

Market research→ dividing costumers into homogeneous groups;
grouping financial characteristics of companies;
Astronomy→ classify different groups of stars and
find unusual objects;
Biology→ find groups of genes sharing similar functions.
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Broadly speaking, clustering algorithms can be divided into two
classes

HARD Clustering: each data point either belongs to a single
cluster.
SOFT Clustering: each data point has a certain probability to
belong to each cluster

(f) Hard versus soft clustering
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Algorithms for cluster analysis

I will shortly review two well known techniques for cluster analysis

Hard Clustering: K-means problem and Lloyd’s algorithm;
Soft Clustering: Mixture models and Expectation-Maximization
algorithm.

We will see below that each of the previous techniques corresponds to
a specific approach via MFG theory
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Hard clustering via K-means
Given a data set X = {x1, . . . , xI}, xi ∈ Rd and card(X ) = I, and fixed
the number of clusters K , we aim to minimize the functional

J(c, µ) =
I∑

i=1

K∑
k=1

1{ci =k}|xi − µk |2 ,

with respect to
the vector of cluster assignment
c = (c1, c2, . . . , cI), ci ∈ {1, . . .K} ,
i.e. ci = k ⇔ |xi − µk | < |xi − µj |, ∀j = 1, . . . ,K
the vector of cluster barycentres
µ = (µ1, µ2, . . . , µK ), µk ∈ Rd

In practice, by minimizing J, we partition the observations into K
clusters

V (µk ) = {x ∈ Rd : |x − µk | = min
j=1,...,K

|x − µj |},

in such a way that each observation belongs to the cluster with the
nearest barycentre.
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Lloyd’s algorithm

Starting from an arbitrary assignment µ0, at nth iteration:
1 Cluster assignment:

Assign the point xi to the closest barycentre, i.e.

cn
i = arg minj |xi − µn

j |2 ∀i = 1, . . . , I.

2 Barycentre update: Given cn, we compute
the new barycenters of the region {xi : cn

i = k}

⇒ µn+1
k =

∑I
i=1 xi1{cn

i =k}∑I
i=1 1{cn

i =k}
∀k = 1, . . . ,K .

3 Stopping criterion: If
supk |µn+1

k − µn
k | > error→ iterate
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(a) Dataset (b) Random initial centroids.
(c-f) Two iterations of k-means
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Advantages and disadvantages

ADVANTAGES:
Very fast (only need to compute the distances between point and
barycenters).
simple to implement.

DISADVANTAGES:
multiple solutions based on the initialization;
number of clusters is selected a priori;
all clusters have circular shapes, hence the algorithm fails in
different cases.
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Soft clustering via Finite Mixture model
Mixture model considers probabilistic partitions
of data in cluster. We assume that the data set
X = {x1, . . . , xI} represents a set of (independent
and identically distributed) observations
of a continuous or discrete random variable X .
We aim to represent the probability
dsitribution of the r.v. X as a convex combination
of parametrized probability density functions

p(x) =
K∑

k=1

αkpk (x ; θk ), x ∈ Rd

- K : number of components of p and α, fixed a priori;
- αk : weights satisfying

∑K
k=1 αk = 1, αk ∈ [0,1];

- θk : parameters which defines the k -th pdfs.
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Two classical examples of parametrized mixture models

Ex. I: Continuous sample space,
pk (x ; θk ) are Gaussian distributions
θk = (µk , Σk ), mean and covariance

Ex. II: Discrete sample space
pk (x ; θk ) are Bernoulli distribution
θk = µk , Bernoulli parameter
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Why Mixture Models?

Blu contour represents a single probability density.
On the left we see a single Gaussian distribution and on the right a
combination of two Gaussians.
The first distribution fails to capture the two clumps in the data and
indeed places much of its probability mass in the center even though
data are very sparse.
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Given

p(x) =
K∑

k=1

αkpk (x ; θk ), x ∈ Rd

Aim: Find α, θ such that p(x) represents the data set X faithfully

How: Maximize w.r.t. α and θ the log-likelihood functional

L(α, θ) =
I∑

i=1

K∑
k=1

γk (xi) ln(αkpk (xi ; θk ))

Tool: Use Expectation-Maximization algorithm.

The responsabilities γk (xi) represent the probability that a point xi of
the data set is generated by the k th component of the mixture and can
used to divide the data set in clusters.
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The EM algorithm in the Gaussian case
Starting from an arbitrary assignment α0, µ0,Σ0, at nth iteration we
have:

1 E-step: Given µn−1
k , Σn−1

k , αn−1
k , k = 1, . . . ,K , compute

γn
k (xi) =

αn−1
k p(xi ;µ

n−1
k ,Σn−1

k )∑K
j=1 α

n−1
j p(xi ;µ

n−1
j ,Σn−1

j )
, (Bayes’ Thm.)

2 M-step: Update the parameters α, µ, Σ, by setting for
k = 1, . . . ,K ,

αn
k =

∑I
i=1 γ

n
k (xi)

I
, µn

k =

∑I
i=1 xiγ

n
k (xi)∑I

i=1 γ
n
k (xi)

,

Σn
k =

∑I
i=1 γ

n
k (xi)(xi − µn

k )t (xi − µn
k )∑I

i=1 γ
n
k (xi)

.
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Advantages and disadvantages

ADVANTAGES: More flexible in terms of cluster covariance than
K-Means: the clusters can take any ellipsoidal shape, rather than
being restricted to circles.

(g) EM versus K-means

DISADVANTAGES:
The number of clusters is selected a priori;
different clustering results for different initializations of the
algorithm;
fails on some specific examples.
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Mean Field Games theory - a brief introduction

Mean Field Games theory aims to study strategic interactions among
an infinite number of agents that are rational, small, homogenous and
identical and are described by a density function m.
In the basic model, the representative agent controls the stochastic
dynamics {

dXt = atdt +
√

2εdWt , t > 0
X0 = x .

where Wt is a Brownian motion and the control law at represents the
control which an agent chooses in order to minimize the long time
average cost functional

J(x ,a) = lim
T→+∞

1
T
Ex

{∫ T

0

[
L(Xs,as) + F (Xs,m(Xs))

]
ds
}
,

L(x ,a) is the Lagrangian and F (x ,m) is the coupling term depending
on the distribution m of the other agents.
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Nash equilibria are characterized by a 2nd order ergodic Mean Field
Games system

−ε∆u(x) + H(x ,Du(x)) + λ = F [m](x), x ∈ Rd , (HJB)

ε∆m(x) + div(DpH(x ,Du(x))m(x)) = 0, x ∈ Rd , (FP)

m ≥ 0,
∫
Rd m(x)dx = 1,

∫
Rd u(x)dx = 0.

The first equation is a Hamilton-Jacobi-Bellman equation, the
second a Fokker-Planck equation and u, λ,m are the unknowns.
(u, λ) describe the value function of the players at position x , while
m represents the distribution when they choose the optimal
strategy
the coupling is given by F [m] in the first equation and the term Du
inside the divergence in the second equation
H(x ,p) = supq∈Rd{pq − L(x ,q)} is the Hamiltonian given by the
Legendre transform of L.∫
Rd u(x)dx = 0, m ≥ 0,

∫
Rd m(x)dx = 1 are normalization

conditions.
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The MFG approach to cluster analysis: soft clustering
and mixture models

Let X be a big data set described by a probability density function
f : Rd → R,

∫
Rd f (x)dx = 1, f (x) ≥ 0. The aim is to find a mixture

m(x) =
∑K

k=1 αkmk (x) that best fits f .

We consider data points as agents and we subdivide the
undistinguished population m into sub-populations, each one
described by a density functions mk , by means of a multi-population
Mean Field Games model.
The similarity, or proximity, among the members of a same population
is encoded in the cost functional of the optimal control problems for
each population, which push the agents to aggregate around the
closer barycentre of the given distribution mk .
Note that, in the standard multi-population Mean Field Games model,
populations are distinguished from the beginning.
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A representative agent of k th population follows the dynamics{
dXk (s) = ak (s)ds +

√
2εdWk (s), s > 0

Xk (0) = x .

and ak (s) is chosen in order to minimize the cost functional

Jk (x , α,m) = lim
T→+∞

Ex
1
T

∫ T

0

[
1
2
|ak (s)|2 + Fk (Xs,m(Xs))

]
ds,

Fk (x ,m) =
1
2

(x − µk )t (Σk
−1)t (Σk

−1)(x − µk ).

barycenter: µk =

∫
Rd xγk (x)f (x)dx∫
Rd γk (x)f (x)dx

covariance: Σk =

∫
Rd (x − µk )t (x − µk )γk (x)f (x)dx∫

Rd γk (x)f (x)dx

weights: αk =

∫
Rd
γk (x)f (x)dx ,

fraction on total mass: γk (x) =
αk mk (x)

m(x) 22 / 58



Fk (x ,m,mk ) = 1
2(x − µk )t (Σk

−1)t (Σk
−1)(x − µk ).

We observe that:

The potential Fk forces the data points to distribute with an higher
probability around the nearest point µk , with an attenuation factor
given by the variance Σk .
The coupling among the various populations is given by the
dependence of µk , Σk on

γk (x) =
αkmk (x)

m(x)

which depends on the total measure m and can be interpreted as
the probability that a point of the data set x is generated by the k th

component of the mixture.
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The corresponding multi-population MFG system is for k = 1, . . . ,K .
−ε∆uk (x) + 1

2 |Duk (x)|2 + λk = 1
2(x − µk )t (Σ−1

k )t (Σ−1
k )(x − µk ),

ε∆mk (x) + div(mk (x)Duk (x)) = 0,

αk =
∫
Rd γk (x)f (x)dx ,

mk ≥ 0,
∫

mk (x)dx = 1,uk (µk ) = 0,

Because the Hamiltonian and the coupling cost are quadratic, the
solution to the MFG is a mixture of Gaussian densities

m(x) =
K∑

k=1

αkm(x ;µk ,Σk )

where
mk (x ;µk ,Σk ) =

1

(2π)
d
2 |Σk |

1
2

e
1
2 (x−µk )t Σ−1

k (x−µk )

Note that αk , µk , Σk are unknown and are obtained by solving the
MFG system.
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Proposition

Let {(uk , λk ,mk , αk )}Kk=1 be a solution of the MFG system with ε = 1.
Then the parameters {αk , µk ,Σk}Kk=1 of the mixture

m(x) =
K∑

k=1

αkm(x ;µk ,Σk )

give a critical point of (a continuous version) of the log-likelihood
functional

L(α, µ,Σ) =

∫
Rd

K∑
k=1

γk (x) ln

(
αkmk (x ;µk ,Σk )

)
f (x)dx

with γk (x) = αk mk (x)
m(x) being the corresponding responsibilities.

Conversely, each critical point of functional log-likelihood can be
characterized through a solution of the MFG system.
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A general MFG system for cluster analysis
The previous Gaussian model can be generalized in several directions.
Given a a bounded set D which contains the support of the data set f ,
we consider the MFG system

−ε∆uk (x) + H(x ,Duk (x)) + λk = Fk (x ,m), x ∈ D,

ε∆mk (x) + div(mk (x)DpH(x ,Duk (x))) = 0, x ∈ D,

∂nuk (x) = 0, x ∈ ∂D,

ε∂nmk (x) + mk (x)DpH(x ,Duk (x)) · n = 0, x ∈ ∂D,

αk =
∫
γk (x)f (x)dx ,

mk (x) ≥ 0,
∫

D mk (x)dx = 1,
∫

D uk (x)dx = 0,

for k = 1, . . . ,K , where n is the outward normal to the boundary of D,
∂n the normal derivative.
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A typical Hamiltonian Hk is

Hk (x ,p) = R|p|γ − Vk (x)

with γ > 1, R > 0, Vk ∈ C2(D). We assume that the coupling cost Fk ,
k = 1, . . . ,K , is a nonnegative, regular function depending on
{mk}Kk=1, but not on {uk}Kk=1.

Typical examples of cost functions are
Fk (x ,m) = Fk (x , µk , σk ),

where µk =
∫
R xγk (x)f (x)dx∫
R γk (x)f (x)dx , σ2

k =
∫

(x−µk )2γk (x)f (x)dx∫
γk (x)f (x)dx .

Fk (x ,m) = mk (x) ln

(
qk (x)

mk (x)

)
where qk depends on the data set f

(Kullback-Leibler divergence)
Under the previous assumptions the general MFG admits a solution
(uk , λk ,mk , αk ), k = 1, . . . ,K .
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A MFG version of the EM algorithm
(Inizialization) Choose randomly α0

1, . . . , α
0
k , m0

1 . . . ,m
0
k ;

(E-step) Compute the responsibilities γn
1 , . . . , γ

n
k ,

γn
k (x) =

αn
kmn

k (x)

mn(x)

(M-step) Solve the k (decoupled) MFG systems

−ε∆uk (x) + 1
2 |Duk |2 + λk = 1

2

∣∣∣ x−µn
k

(σn
k )2

∣∣∣2 , x ∈ R,

ε∆mk (x) + div(mk (x)Duk (x)) = 0, x ∈ R,

αk =
∫
R xγn

k (x)dx

mk > 0,
∫

mk (x)dx = 1,
∫

D uk (x)dx = 0

where

µn
k =

∫
R xγn

k (x)f (x)dx∫
R γ

n
k (x)f (x)dx

, (σn
k )2 =

∫
R (x − µn

k )2γn
k (x)f (x)dx∫

R γ
n
k (x)f (x)dx

(Stopping criterion) If supk |µn+1
k − µn

k | > error, iterate
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Test 1. Piecewise constant data set
We consider a piece-wise constant distribution f on Ω = [0,1],
composed by three plateaux of different widths and heights, such that∫ 1

0 f (x) dx = 1.
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(a) (b) (c)
The thin line represents f , while the thick line represents the mixture

m =
∑K

k=1 αkmk , for K = 1,2,3 from (a) to (c).

The mean and the variance of each mk adapt to the data, according to
the given number K of mixture components.
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Test 2. Oscillating data set
f is given by suitably scaling and translating the function x sin(4πx) for
x ∈ [0,1], so that f has compact support and

∫ 1
0 f (x)dx = 1.
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(a) (b) (c)
We show the solutions corresponding to K = 2,3,4 from (a) to (c). The
peaks of f are sequentially approximated as the number K of mixture
components increases, according to their heights and the underlying
masses.
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Test 3. An application to color quantization
Consider the case of an image in gray scales, i.e. each pixel contains
a level of gray represented by a value in the interval [0,1]. To generate
the data set distribution f :
x-axis: grey level in [0,1]
y -axis: their frequency in the pixels of the image
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(a) (b)

A black and white image (a) and its gray scales distribution (b).
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MFG clustering and the corrispondig mixture (K=2)
Grey level corrisponds to the barycenter of the mixtures.
Each image is reconstructed from the corresponding mixture by simply
using the responsibilities {γk}k=1,...,K . The pixel x it is mapped to the
value µk∗ , where k∗ = arg maxk=1,...,K γk (xp).
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MFG clustering and the corrispondig mixture (K=3)
Grey level corrisponds to the barycenter of the mixtures.
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MFG clustering and the corrispondig mixture (K=5)
Grey level corrispond to the barycenter of the mixtures.
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Test 4. The Mouse data set
Data from the Elki project, forming a “mouse” similar to a popular
comic character. The data set is organized in 3 clusters (plus some
random noise), corresponding to the head and the ears of the mouse.
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The “mouse” data set (a) and the corresponding distribution (b).
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For the visual representation, we consider RGB triplets in [0,1]3, and
we assign to the three clusters the pure colors red (1,0,0), green
(0,1,0) and blue (0,0,1) respectively. Then we use the responsibilities
{γk}k=1,2,3 ∈ [0,1] to compute the color of each cell of the grid.
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MFG mixture (a) and clustering (b) of the “mouse” data set for K = 3.
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The MFG approach to cluster analysis: the Bernoulli
case

In the previous model, the data set is represented by the samples of a
continuous r.v. taking values in Rd . Now we consider a data set
X = {x1, . . . , xN} generated by a discrete r.v. taking a finite number of
values S, i.e. xi ∈ {0, . . . ,S}.
As before, the aim is to find a mixture model

π(x) =
K∑

k=1

αkπk (x ; θk ), with αk ∈ [0,1],
K∑

k=1

αk = 1

which gives the best representation of X .

For a Bernoulli mixture model:
S = 2, pk (x ; θk ) are Bernoulli distributions with θk = µk
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We introduce the K -populations finite state ergodic MFG system

Vk (i) = min
Pi : Pij≥0,

∑
j Pij =1

{ S∑
j=1

Pij (c(Pij ) + ε log(Pij ) + F (i , θk ) + Vk (j))
}
− λk ,

πk (i) =
∑S

j=1 Pk
ji πk (j),

πk (i) ≥ 0,
∑S

i=1 πk (i) = 1,
∑S

i=1 Vk (i) = 0,

αk = 1
N

∑N
n=1 γk (xn), i ∈ {1, . . . ,S}

Pk
i = arg minPi : Pij≥0,

∑
j Pij =1

{ S∑
j=1

Pij (c(Pij ) + ε log(Pij ) + F (i , θk ) + Vk (j))
}

Bernoulli parameter: θk =

∑N
n=1 γk (xn)xd

n∑N
n=1 γk (xn)

, d = 1, . . . ,D

fraction on total mass: γk (xn) =
αkπk (xn)

π(xn)
k = 1, . . . ,K , xn ∈ X .

The vector θk ∈ RS represents the average value of the data set with respect
to the distribution πk and interaction among the sub-populations is encoded in
the weights αk and in the coupling cost F (i , θk ) 38 / 58



More generally, X = (X 1, . . . ,X D) can be a D-dimensional vector, each
component taking S different values. In this case, Vk , πK , λk are
D-dimensional vectors.
For example, for a Bernoulli mixture model, we have a 2-states
K -populations MFG system for each d = 1, . . . ,D

V d
k (0) = minp∈[0,1]{p(− 1−p

2 + ε log(p) + V d
k (0))

+(1− p)(− p
2 + ε log(1− p) + V d

k (1))} − λd
k + (θd

k )2

V d
k (1) = minq∈[0,1]{(1− q)(− q

2 + ε log(1− q) + V d
k (0))

+q(− 1−q
2 + ε log(q) + V d

k (1))} − λd
k + (1− θd

k )2

πd
k (0) = pπd

k (0) + (1− q)πd
k (1)

πd
k (1) = (1− p)πd

k (0) + qπd
k (1)

πd
k ≥ 0,

∑
x∈{0,1} π

d
k (x) = 1,

∑
x∈{0,1} V d

k (x) = 0

αk = 1
N

∑N
n=1 γk (xn)
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Example: a dataset of handwritten digits
We consider as dataset the MNIST database of handwritten digits,
containing 60000 images of the digits {0, . . . ,9}, each composed by
28× 28 pixels of monochrome images, turned in binary vectors of size
D = 784.

Different samples of hand-written digits from the MNIST database. Each
sample is labelled by the number of the corresponding digit, to check the
correctness of the clusterization

To cluster the images, we use a finite state MFG with Bernoulli
distribution, i.e. S = 2, and number of components D = 784 40 / 58



Test 1: Digits 1 and 3
Digits 1,3 with K = 2. In Figure 5, the clusterization histogram and the
corresponding Bernoulli parameters.
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Clusterization histogram and the corresponding Bernoulli parameters.

By the clusterization histogram we see that the percentage of digits
correctly identified is high.
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Test 2: Digits 3 and 5
Same example with the digits 3 and 5. The clusterization is slightly
ambiguous, since, in average, the samples of the two types are more
similar to each other.
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Test 3: Even digits with K = 5
Consider the case K = 5 with 0,2,4,6,8. In Figure 7, we observe that
the chosen digits are, in average, different from each other, so that
they are quite well clusterized.
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Clusterization histogram for even digits and the corresponding Bernoulli
parameters.
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The MFG approach to cluster analysis: hard clustering

Let X be a big data set described by a probability density function
f : Rd → R,

∫
Rd f (x)dx = 1, f (x) ≥ 0 and supp{f} contained in a

bounded set Ω.

Aim: Subdivide a data set into K clusters such that each data point
belongs to the cluster with the nearest barycenter.
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Heuristic derivation of the MFG system
for the Hard Clustering problem

It is well known, in classical cluster theory, that the hard clustering
K -means problem can be seen as the limit of Gaussian mixture model
when the variance parameter of the mixture model goes to 0.

We exploit a similar idea to deduce a PDE system for hard clustering:
we pass to the limit in the soft clustering MFG system

−ε∆uk (x) + 1
2 |Duk (x)|2 + λk = 1

2 (x − µk )t (Σ−1
k )t (Σ−1

k )(x − µk ),

ε∆mk (x) + div(mk (x)Duk (x)) = 0,
αk =

∫
Rd γk (x)f (x)dx ,

mk ≥ 0,
∫

mk (x)dx = 1,uk (µk ) = 0,

for Σk = σI and for ε/σ2 → 0.
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Eliminating in the limit system the densities mk which reduce to Dirac
functions at the barycenter µk , we get the the system of K first order
HJ equations

|Duk | = 1 x ∈ Rd ,

uk (µk ) = 0,

µk =
∫
Rd x1Sk (x)f (x)dx∫
Rd 1Sk (x)f (x)dx ,

Sk = {x ∈ Rd : uk (x) = minj=1,...,K uj(x)}

The coupling among the equation is through the sets Sk .
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Consider the continuous K-means functional

I(y1, . . . , yk ) =
K∑

k=1

∫
V (yk )

|x − yk |2f (x)dx ,

where V (yk ) = {x ∈ Rd : |x − yk | = min
j=1,...,K

|x − yj |}.

Theorem
(i) Let (y1, . . . , yK ) be a critical point of the functional I with clusters

V (yk ). Then, there exists a solution of the system of HJ equations
such that µk = yk and Sk = V (yk ).

(ii) Given a solution u = (u1, . . . ,uK ) of of the system of HJ equations,
then (µ1, . . . , µK ) is a critical point of I with clusters V (yk ) = Sk .
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A geometric interpretation of the K-means problem

Given a set of generators {yk}Kk=1, yk ∈ Ω, the Voronoi region
corresponding to yk is defined by

V (yk ) = {x ∈ Ω : d(x , yk ) = min
j=1,...,K

d(x , yj)}

and the family {V (yk )}Kk=1 determines a tessellation of Ω.

Voronoi tesselation: Left: Euclidean distance; Right: Manhattan distance.
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Definition: A Voronoi tessellation {V (yk )}Kk=1 of Ω is said to be a
centroidal Voronoi tessellation (CVT) if, for each k = 1, . . . ,K , the
generator yk of V (yk ) coincides with the centroid of V (yk ), i.e.

yk =

∫
V (yk ) sds∫
V (yk ) ds

.

Left: Voronoi tessellation; Right: Centroidal Voronoi tessellation.
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K-Means problem and centroidal Voronoi tesselations

It can be proved that critical points of the K-means functional

I(y1, . . . , yk ) =
K∑

k=1

∫
V (yk )

|x − yk |2dx ,

where V (yk ) = {x ∈ Rd : |x − yk | = min
j=1,...,K

|x − yj |}

are the generators of Centroidal Voronoi Tessellation with

V (yk ) = {x ∈ Rd : |x − yk | = min
j=1,...,K

|x − yj |}
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A MFG version of the Lloyd’s algorithm

(Inizialization) Given an initial guess (µ(0),1, . . . , µ(0),k ):
(E-step) Solve the K (uncoupled) HJ equations |Du(n)

k | = 1,

u(n)
k (µ(n),k ) = 0,

for k = 1, . . . ,K and compute the Voronoi diagrams

Sk ,(n)
u = {x ∈ Ω : u(n)

k (x) = min
j=1,...,K

u(n)
j (x)}, k = 1, . . . ,K .

(M-step) Compute the new centroids

µ(n+1),k =

∫
Rd x1Sk,(n)(x)f (x)dx∫
Rd 1Sk,(n)(x)f (x)dx

In the first step of the iterative procedure, it is sufficient to solve
the problem in the set Ω, the support of the density f .
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Test 1:
The density function f is given by a uniform distribution on Ω,

Two Voronoi tessellations with K = 6 computed starting from different initial centroids, above/left:
µ(0) = ([0.4, 0.6], [0.6, 0.4], [0.6,−0.4], [−0.4,−0.6], [−0.6,−0.4], [−0.6, 0.4]); above/right:
µ(0) = ([0.4, 0.6], [0.6, 0.4], [0.6,−0.4], [−0.6,−0.4], [−0.4, 0.6], [0.1, 0.1])
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Geodesic Centroidal Voronoi Tesselations

The previous approach can be extended to centroidal Voronoi
tessellations related to a general convex metric d.

Definition A geodesic Voronoi tessellation {V (yk )}Kk=1

V (yk ) = {x ∈ Ω : d(x , yk ) = min
j=1,...,K

d(x , yj)}

is said to be a geodesic centroidal Voronoi tessellation if the
generator yk of V (yk ) coincides with the centroid of V (yk ), i.e.∫

V (yk )
d(yk , x)f (x)dx = min

z∈V (yk )

∫
V (yk )

d(z, x)f (x)dx .

The corresponding geodesic K-means functional is

Id (y1, . . . , yk ) =
K∑

k=1

∫
V (yk )

d(yk , x)2f (x)dx
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The MFG system for geodesic centroidal Voronoi tessellations
Critical points of the geodesic K-means functional can be
characterized by the system of HJ equations

H(x ,Duk ) = 1, x ∈ Ω,

uk (µk ) = 0,

Sk = {x ∈ Rd : uk (x) = minj=1,...,K uj (x)},∫
Sk uk (x)f (x)dx = min{

∫
Sk uy (x)f (x)dx : uy the solution of H(Du) = 1,

u(y) = 0 with y ∈ Sk}

Here H is a convex, positive homogeneous Hamiltonian corresponding
to the distance d.
For example, if d(x , y) is the Riemannian distance induced by a
positive definite matrix A(x), then H(x ,p) =

√
A(x)p · p
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Test 2. Chebyshev distance
We consider the Chebyshev distance d(x , y) = maxi(|xi − yi |) and the
density function f given by a uniform distribution on Ω

Above: left panel ∆x = 0.01; right panel: ∆x = 0.001 starting from
µ(0) = ([−0.6,−0.6], [−0.4,−0.6], [−0.4,0]).
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Conclusion

We presented a procedure for computing clusters in hard and
soft-clustering analysis by means of a system of PDEs. In some specific
case, this approach is an infinite dimensional version of classical
methods in finite-dimensional optimization theory

From a theoretical point of view, it allows to use all the techniques of
PDE theory to discover new properties and structures inside cluster
analysis;

From a computational one, the MFG model is very flexible and can be
generalized in several directions (different coupling costs)

It should be possible to interpret other classical algorithms in Machine
Learning through the theory of partial differential equations. This is well
known in supervised machine learning, but it hasn’t been much explored
in the unsupervised case
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Thank You!
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